MULTICS SYSTEM-PROGRAMMERS® MANUAL

Published;

Identification

Specific POPS
B. P, Goldberg, I, B. Goldberg

Chapter 2
POPS

WORK STACK POPS
Pops
POP: CLOAD Load into current work
FORMAT: cload(Y)
FUNCTION: Set C(W0O) = C(Y)
EXAMPLE : See CEAW

POP: CEAW Effective address to current work
FORMAT: ceaw(Y)
FUNCTION: Set C(W0) 0-17 =Y
Set C(W0O) 18-35 = O
EXAMPLE ;

Assume C(VARSIZ) = |000007 | 000000 |
0 18 35

SECTION BZ,.7.02

PAGE 1
08/16/68

The following two pops are equivalent: cload(varsiz)

and ceaw(7)

WO - W5 Before WO - W5 After

W5 000105 | 000000 w5 000105 000000
Wi 000104 | 000000 wh 000104 000000
w3 000103 | 000000 w3 000103 000000
w2 000102 | 000000 w2 000102 000000
W1 000101 | 000000 w1 | 000101 000000
wo 000100 000000 wo 000007 000000

0 18 35 0 18

35

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BZ.7.02 PAGE 2

POP: LOAD Load

FORMAT: lToad(Y)

FUNCTION: 1,
2, Set C(WO) = C(Y)

See EAW

EAW Effective address to work

Add 1 to work counter

EXAMPLE ;

POP;

FORMAT: eaw(Y)
FUNCTION: 1.

2. Set C(WO) 0-17 = Y

Set C(WO) 18-35 = O

Add 1 to work counter

EXAMPLE
Assume C(VARSIZ) = | 000007 [00000Q |
0 18 35
The following two pops are equivalent: 1load(varsiz)
and eaw(7)
WO - W5 Before WO - W5 After
w5 | 000105 000000 w5 | 000104 000000
wL | 000104 000000 w4 | 000103 000000
w3 | 000103 000000 w3 | 000102 000000
w2 | 000102 000000 w2 | 000101 000000
w1 | 000101 000000 w1 | 000100 000000 |
wo [000100 000000 WO [000007 000000 |
18 35 0 18 35
POP: STOR Store
FORMAT: stor(Y)
FUNCTION: Set C(Y) = C(wO)
POP; STORP Store and prune
FORMAT: storp(Y)
FUNCTION: 1. Set C(Y) = C(W0)
2. Prune WO

rA

MULTICS SYSTEM-PROGRAMMERS“ MANUAL

POP:; STU Store upper

FORMAT :

FUNCTION:

stu(Y)
Set C(Y) 0-17 = C(W0) 0-17
Do not change C(Y) 18-35

POP: STUP Store upper, and prune

FORMAT .
FUNCTION:

stup(Y)

1.

2,

Set C(Y) 0-17 = C(wW0) 0-17
Do not change C(Y) 18-35

Prune WO

POP: PRW Prune work

FORMAT:
FUNCTION:

EXAMPLE :

prw(Y)

Su

btract C(Y) 0-17 from work counter; i,e,,

prune work stack by C(Y) 0-17 words

Se

e PWCT

POP: PWCT Prune work to count

FORMAT: pwct(Y)

FUNCTION:
EXAMPLE ¢

Prune work to size C(Y) 0-17

Assume C(c2) = (000002 [000000]
0

18 35

C(c3) = [000003 | 000000 |
0 18 35

The following pops are equivalent: prw(c2) and
pwct (c3)

Work Stack Before

w5
Wy
w3

W1
w0

Work Stack After

0 0 w3 0 0
100 0 w2 100 0
200 0 w1 200 0
300 0 wo | 300 0
400 0 0 18 35
500 0

0 18 35

SECTION BZ.7.02 PAGE 3

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 4

POP: PRWX Prune work for exit

FORMAT: prwx()

FUNCTION: Prune work to its size prior to the last
executed JSB pop

COMMENT: The function of this pop is to prune work, not
to extend it

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 5

B. MISCELLANEOUS POPS

222&,

POP: POPNOP No operation
FORMAT: popnop()

FUNCTION: Go to the next pop

POP: ORKEY Or symbol key
FORMAT: orkey(Y)
FUNCTION: Set C(SYMKEY) 18-35 = C(SYMKEY) 18-35 ,or, C(Y) 18-35
SYMKEY is a one-word register in the data segment,
(The interpreter ignores C(SYMKEY) 0-17)
POP;: MRK Set MRKER
FORMAT: mrk(Y)
FUNCTION: Set C(MRKER) 0-17 =Y
MRKER is a one-word register in the data segment.
(The interpreter ignores C(MRKER) 18-35)
POP: FACT Fact
FORMAT: fact(Y)
Y may be an even or odd locaticn
FUNCTION: 1, Bump bottom of roll 3 (fact roll) by two words
2, Set C(word 1) = C(Y)
3. Set C(word 2) = C(Y+1)
COMMENT: fact(Y) is equivalent to load(Y)
' pob (3)

cload(Y+1)
pobp(3)

MULTICS SYSTEM=-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 6

C. ARITHMETIC AND LOGICAL POPS

Most of the arithmetic and logical pops are in one of

eight categories, as shown in Figure 1, The pops that are
not in one of these categories are NGT and NOT,

1. Arithmetic Pops

Arithmetic pops perform the following types of operations:
addition, subtraction, multiplication, division, and negation,
These pops work on full words, However, they are frequently
used to perform simple operations in which only the upper half
of each word is of interest to the user, In these cases, the
user should make sure that the lower halves of the words are
cleared before the pops are executed, Otherwise, the results

might be incorrect,

EXAMPLE ;
The pop add(Y) sets C(WO) = C(WO) + C(Y)
Before After
Y [000003 | 777777 | Y [_pooooo3 [777777 |
0 18 35 0 18 35
wo | ooo0002 | 777777 | wo | 000006 | 777776 |
0 18 35 0 18 35

The upper half of the result is 6, not 5, becuase of carry
from the lower half,

Pops

POP: ADD Add

FORMAT: add(Y)

FUNCTION: Set C(WO) = C(WO) + C(Y)

Category

[SSREN]

o U~ w N -

Interpreter Action - _Operation and Corresponding Pops
) .+ - * / .and. .or. .ext. .eor., .ins.
Set C(WO) = C(WO) operation C(Y) ADD | SUB MLT [DVD AND OR EXT | EOR INS
Set O1Y) = C(Y) operation C(WO0) ADS | 9BS | WLTS ANS T ORS FRS
Set C(Y) = C(Y) operation C(WO) ADSP | SBSP [MLTSP ANSP | ORSP ERSP
and prune WO _
Set C(RP(WO)) = C(RP(WO))operation C(Y) | ADDI AND EXTI TNST
Set C(RP(WO)) = C(RP(WO))operation C(Y) [ADDIP ANDIP EXTIP INSTP
and prune WO
Set C(B) = C(B) operation C(Y) ERB | TNSE
B is a location on roll N
{See ERB for further explanation)
Set C(W1) = C(W1) operation C(Y) NST
Set C(W2) = C(W2) operation C(Y) TNG2

Notes: a. The operations are described in the text

b. For representative examples of the categories, see EXT(categories 1,7, and 8),
ORS (categories 2 and 3), ADDl (categories 4 and 5), and ERB (category 6).

Figure 1,

Categories of Arithmetic and Logical Pops

1VﬂNVW » SYIWWTHIOUd ~WILSAS SIILTNW

20°.°Z728 NOILDJ3S

L 39

MULTICS SYSTEM-PROGRAMMERS* MANUAL SECTION BZ,7.02 PAGE 8

POP: ADS Add to storage
FORMAT: ads(Y)
FUNCTION: Set C(Y) = C(Y) + C(wO)

POP: ADSP Add to storage, and prune

FORMAT: adsp(Y)

FUNCTION: 1, Set C(Y) = C(Y) + C(WO)
2, Prune WO

POP: ADDI Add indirect
FORMAT: addi(Y)
FUNCTION: Set C(RP(WQ)) = C(RP(WO)) + C(Y)

EXAMPLE ;
addi (alpha)
ALPHA |_000002 [000000] C(TOP+6) 0-17 = 100000
0 18 35
wo | S ol 6] RP(WO) = 100005
0 18 30 35
100005 before | ooooos | 000000 |
0 18 35
100005 after | 000006 | 000000 |
0 18 35

POP; ADDIP Add indirect, and prune

FORMAT: addip(Y)

FUNCTION;: 1, Set C(RP(WO)) = C(RP(WO)) + C(Y)
2, Prune WO

POP: SUB Subtract

FORMAT: sub(Y)

FUNCTION: Set C(W0O) = C(w0) - C(Y)

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7.02 PAGE 9

POP: SBS Subtract from storage
FORMAT: sbs(Y)
FUNCTION: Set C(Y) = C(Y) - C(wWO)

EXAMPLE ;
sbs(alpha)
ALPHA before |_000005 1 00000Q |
0 18 35
wo | 000002 | 000000 |
0 18 35
ALPHA after | 000003 | 000000 |
0 18 35

POP: SBSP Subtract from storage, and prune
FORMAT: sbsp(Y)
FUNCTION: 1, Set C(Y) = C(Y) - C(WO)

2, Prune WO

POP; MLT Multiply
FORMAT: mlt(Y)

FUNCTION: Set C(W0O) 0-17 = C(WO) 0O=-17* C(Y) 0-17, assuming
that C(W0) 18-35 = 0 and C(Y) 18-35 = O

COMMENT . The operands and the product are 18-bit upper-

: half integers. If necessary, the product is
truncated on the left to 18 bits,

POP: MLTS Multiply to storage

FORMAT: mlts(Y)

FUNCTION: Set C(Y) 0-17 = C(Y) 0-17* C(W0O) 0-17, assuming
that C(Y) 18-35 = 0 and C(W0O) 18-35 =0

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7.02 PAGE 10
EXAMPLE ¢

mits(alpha)
wo |[_000003 | 000000 |
0 18 35
ALPHA before [000002 | 000000 |
0 18 35
ALPHA after [000006 | 000000 |
0 18 35

COMMENT: The operands and the product are 18-bit upper-half
integers, If necessary, the product is truncated
on the left to 18 bits,

POP: MLTSP Multiply to storage, and prune

FORMAT: mltsp(Y)

FUNCTION: 1, Set C(Y) 0-17 = C(Y) 0-17%* C(WO) 0-17 assuming
that C(Y) 18-35 = 0 and C(W0) 18-35 = 0O

2. Prune WO

COMMENT The operands and the product are 18-bit upper-half
integers, 1If necessary, the product is truncated
on the left to 18 bits,

POP: DVD Divide

FORMAT: dvd(Y)

FUNCTION: Set C(WO) 0-17 = C(W0) 0-17/C(Y) 0-17, assuming that
C(w0) 18-35 = 0, C(Y) 18-35 = 0, and C(Y) 0-17 ¢ O

EXAMPLE ¢

dvd(alpha)

WO before | 000007 | 000000 |
0 18 35

ALPHA [(000003 [000000 |
0 18 25

WO | 000002 | 000000 |
0 18 35

COMMENT: The operands and the quotient are 18-bit upper-half
integers. The remainder is ignored.

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7,02 PAGE 11

POP: NGT Negate (two’s complement)
FORMAT: ngt()
FUNCTION: Set C(w0) = -C(W0)

COMMENT: 1. Two negates will always return the original state
of a number

2. Negation means taking the two’s complement of a
number, It does not mean changing bit 0 (the
sign bit)., The following code changes C(ALPHA) O:

eaw(octal(400000))
ersp(alpha)

This code does not negate ALPHA, unless
C(ALPHA) = 200000000000 or 600000000000,

POP: NGTS Negate storage (two’s complement)
FORMAT: ngts(Y)

FUNCTION: Set C(Y) = =C(Y)

EXAMPLES:

In each of the following examples, the pop is ngts(alpha)

ALPHA before | 000001 | 000000 | +1 ALPHA after [777777 Ioooooog -1
0

0 18 35 18 3
ALPHA before | 000000 | 000000 | O ALPHA after | 000000 [000000 |
0 18 35 0 18 35
(There is no
such thing
as -0)

2, Logical Pops
a, Simple Operations

The following truth table summarizes the simple logical

operations:
xk | yk zk
.and.' .ext. .or.r .eor, .and, = and
0 0 0 0 0 0 .ext., = extract
0 1 0 0 1 1 .or, = or
1 0 0 1 1 1 .eor, = exclusive or
1 1 1 0 1 0

0

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.02 PAGE 12

The general format of pops performing these operations is:
Set zk = xk ,logical, yk (for k = 0,1,,.., and 35)

where ,logical, represents the operation; and x,y,and z are

36-bit quantities whose k“th bits are xk, yk, and zk,

respectively, The pops work on all bits of x,y, and z in

parallel,

Pops

POP: AND ANd

FORMAT: and(Y)

FUNCTION: Set C(W0O) = C(WO) .and. C(Y)

POP: ANS And to storage
FORMAT: ans(Y)
FUNCTION: Set C(Y) = C(Y) .and. C(WO)

EXAMPLE ;
ans(alpha)
WO [oooooe [000000 |
0 18 35
ALPHA before [000003 ! 000000 |
0 18 35
ALPHA after | 000002 | 000000 |
0 18 35

POP: ANSP And to storage, and prune

FORMAT: ansp(Y)

FUNCTION: 1, Set C(Y) = C(Y) .and., C(WO)
2, Prune WO

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02

POP: ANDI And indirect
FORMAT: andi(Y)
FUNCTION: Set C(RP(W0)) = C(RP(WO)) .and. C(Y)

POP: ANDIP And indirect, and prune

FORMAT: andip(Y)

FUNCTION: 1, Set C(RP(WO)) = C(RP(WO)) .and, C(Y)
2. Prune WO

POP: OR Or
FORMAT: or(Y)
FUNCTION: Set C(WO) = C(WO) .or. C(Y)

POP: ORS Or to storage
FORMAT: ors(Y)
FUNCTION: Set C(Y) = C(Y) .or, C(wO)

EXAMPLE ;

ors(alpha)

WO | 000006 | 000000 |
0 18 35

ALPHA before | 000003 | 000000 |
0 18 35

ALPHA after [000007 | 000000 |
0 18 35

POP: ORSP Or to storage, and prune

FORMAT: orsp(Y)

FUNCTION: 1, Set C(Y) = C(Y) .or, C(wWO)
2, Prune WO

PAGE 13

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.02 PAGE 14

POP: EXT Extract

FORMAT: ext(Y)

FUNCTION: Set C(W0O) = C(WO) .ext, C(Y)
EXAMPLE: ext(alpha)

WO before [oooo06 | 000000 |
0 18 35
ALPHA [000003 | 000000 |
0 18 35
WO after [000004 | 000000 |
0 18 35

POP: EXTI Extract indirect
FORMAT: exti(Y)
FUNCTION: Set C(RP(WO)) = C(RP(WO)) .ext. C(Y)

POP: EXTIP Extract indirect, and prune

FORMAT: extip(Y)

FUNCTION: 1, Set C(RP(WO)) = C(RP(W0)) .ext, C(Y)
2, Prune WO

POP; EOR Exclusive or
FORMAT;: eor(Y)
FUNCTION: Set C(WO) = C(WO) .eor., C(Y)

POP: ERS Exclusive or to storage
FORMAT: ers(Y)
FUNCTION: Set C(Y) = C(Y) .,eor, C(WO)

POP: ERSP Exclusive or to storage, and prune
FORMAT: ersp(Y)
FUNCTION: 1, Set C(Y) = C(Y) .eor., C(WO)

2., Prune WO

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.,02 PAGE 15

POP: ERB Exclusive or to bottom
FORMAT: erb(Y)
FUNCTION: Set C(B) = C(B) .eor, C(Y)
B‘is a location on roll N, where N = C(MRKER) 0-17

For fixed-size groups, B = C(BOTTOM«N) 0-17
- C(GRPSIZ+N) 0=-17

For variable-size groups, B = C(BOTTOM+N) 0-17
- C(VARSIZ) 0-17

EXAMPLE ;
erb(alpha)
ALPHA [000001 | 000000 | C(BOTTOM+6) 0-17 = 100100
0 18 35 B = 100100 - 100 = 100000
MRKER [000006 | 000000 | C(GRPSIZ+6) 0-17 = 100
0 18 35
100000 before ‘000007 | 000000 |
0 18 35
100000 after [000006 | 000000 |
0 18 35

COMMENT: If N consists of fixed-size groups, B is the first
word of the last group before the bottom, However,
the user may set VARSIZ to any number; thus, if N
consists of variable-size groups, B may be any word

in (or even above) the last group,
b. Insert O 0o

The following truth table summarizes the insert operation:
xk yk zk before zkoafter

L =2 a2 00000
—_~aOO0=-=00
S O=0O0=0=0
=2 O—==2a00

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 16

Pops in this category insert xk into zk when yk = 0, These pops
work on all bits of x, y, and z in parallel, The operand Y is
always an even location, with C(Y) = x and C(Y+1) =y. The

location of z is different for each insert pop.

Pops
POP; INS Insert

FORMAT: ins(Y)
Y is an even address

FUNCTION: Set C(W0O) = C(WO) .ins, C(Y)

EXAMPLE ;
ins(2000)
2000 Q| X QlY
2001 777000 777000 |
0 9 18 27 35
WO before [l Al [cJp 1}
, 0 9 18 27 35
WO after Lalx [cly 1]
0 9 18 27 35

POP: INSI Insert indirect

FORMAT: insi(Y)
Y is an even address

FUNCTION: Set C(RP(WO)) = C(RP(WO)) .ins. C(Y)

POP: INSIP Insert indirect, and prune

FORMAT: insip(Y)
Y is an even address

FUNCTION: 1, Set C(RP(WO)) = C(RP(WO)) .ins. C(Y)
2, Prune WO

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ.7.02 PAGE 17
POP;: INSB Insert into bottom
(See ERB.)

FORMAT: 1insb(Y)
Y is an even address

FUNCTION: Set C(B) = C(B) .ins, C(Y)

POP:; INS1 Insert into w1

FORMAT: insi1(Y)
Y is an even address

FUNCTION: Set C(W1) = C(W1) .ins, C(Y)

POP: INS2 Insert into w2

FORMAT: ins2(Y)
' Y is an even address

FUNCTION: Set C(W2) = C(W2) .ins, C(Y)
C. Not Operation

Pop

POP: NOT Not

FORMAT: not(Y)

FUNCTION: If C(Y) = 0, set C(Y) 0-17 = 1
If C(Y) # 0, set C(Y) = O

EXAMPLES ;
not(alpha)
ALPHA before [000000 | 000000 | ALPHA before [000100 | 000000 |

0 18 35 0 18 35
ALPHA after (000001 | 000000 | ALPHA after [000000 | 0000OO |

0 18 35 0 18 35
COMMENT: The purpose of this pop is to invert [000000 I1gQQOO%é

0
and | 000001 | 00000%]. The interpreter treats any
0 18 5

operand that is non-zero as if it were [[00C0001 !13000022.
0

MULTICS SYSTEM=-PROGRAMMERS® MANUAL SECTION BZ,7.02 PAGE 18

D. ROLL MANIPULATION POPS

1. Normal Roll Manipulation

Pops

POP: POB Put on bottom

FORMAT: pob(N)

FUNCTION: 1, Bump bottom of roll N by 1 word
2. Set C(word 1) = C(WO)

POP: POBP Put on bottom, and prune

FORMAT: pobp(N)

FUNCTION: 1, Bump bottom of roll N by 1 word
2. Set C(word 1) = C(W0)
3, Prune WO

POP: POBS Put on bottom from storage
FORMAT: pobs(Y)

FUNCTION: 1, Bump bottom of roll M by 1 word, where
M=C (MRKER) 0-17

2. Set C(word 1) = C(Y)

POP: GOB Get off bottom
FORMAT: gob(N)
FUNCTION: 1, Set false, and go to next pop if C(TOP+N) 0=17 =
C(BOTTOM+N) 0-17, Otherwise, set true and perform
steps 2-3,
2. Add 1 to work counter

3. Set C(WO) = C(C(BOTTOMN) 0-17 - 1); i,e,, load
the word immediately above the bottom of roll N

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ,7.02 PAGE 19

POP: GOBP Get off bottom, and prune
FORMAT: gobp(N)
FUNCTION: 1, Set false, and go to next pop if
C(TOP+N) 0-17 = C(BOTTOM+N) 0-17, Otherwise,
set true and perform steps 2-U4,
2, Add 1 to work counter

3., Set C(WO) = C(C(BOTTOM+N) 0-17 - 1); i.e., load
the word immediately above the bottom of roll N

L4, Set C(BOTTOM+N) 0-17 = C(BOTTOM+N) 0-17 - 1;

i.e., prune one word from the bottom of roll N
POP: CNT Count roll
~FORMAT: cnt(N)
FUNCTION: 1, Add 1 to work counter

2. Set C(WO) = C(BOTTOM+N) = C(TOP+N)

This calculation gives the number of words
between the top and the bottom of the roll;
i,e., the number of unreserved words in use,

POP; CNTG Count group

FORMAT: cntg(N)

FUNCTION: Count the last variable size group on roll N,

1. Assume that RP(ROLPTR+N) Is the location of
the VSW of the last group on roll N, Count
the group (w words)

w = C(BOTTOM+N) 0-17 -RP(ROLPTR+N)-1

2, Set C(VSW) 0-17 = w

MULTICS SYSTEM-PROGRAMMERS “ MANUAL

SECTION BZ.7.02 PAGE 20

EXAMPLE ;
cntg(6)
TOP+6 [100000 | 000000] BOTTOM+6 | 100107 | 000000 |
0 18 35 0 18 35
ROLPTR+6 | 100 [x[6 | RP(ROLPTR+6) = 100100
0 18 30 35
VSw after [000006 lunchanged | (100107-100100-1 = 6)
0 18 35
Illustration
Roll 6
100000
100100 000006 000000 Variable size word
100101 first word
100107 _ Bottom
0 18 35

COMMENT: In executing this pop, the interpreter ignores

C(ROLPTR+N) 30-35,

POP: PRU Prune roll
FORMAT: pru(N)

FUNCTION: Set C(BOTTOM+N) 0-17 = C(TOP+N) 0-17

POP: PTP Prune to pcinter
FORMAT: ptp(Y)

FUNCTION: Set C(BOTTOM+C(Y) 30-35) 0-17 = RP(Y)

POP: PTPP Prune to pointer in work and prune

FORMAT: ptpp()

FUNCTION: 1, Set C(BOTTOM+C(WO) 30-35) 0-17 = RP(WO)

2., Prune w0

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.02 PAGE 21
COMMENT: Assume C(C1) = 000001 000000
0 18 35
In this case, ptpp() is equivalent to ptp(wO)
prw(c1)
POP: PBCT Prune by count
FORMAT: pbct(N)
FUNCTION: Set C(BOTTOM+N) 0-17 = C(BOTTOM+N) 0-17 = C(W0) 0-17;
i.e., prune C(WO) 0-17 words from the bottom of
roll N
POP: PBCTP Prune by count, and prune
FORMAT: pbctp(N)

FUNCTION: 1, Set C(BOTTOM+N) 0-17 =
C(BOTTOM+N) 0-17 - C(W0) 0=-17

2., Prune WO

POP; PTCT Prune to count

FORMAT: ptct(N)

FUNCTION: Set C(BOTTOM+N) 0-17 = C(TOP+N) 0-17 + C(W0) 0=-17;
i.e,, prune roll N, so that there are C(wW0) 0-17
words from top to bottom

POP: PTCTP Prune to count, and prune

FORMAT: ptctp(N)

.FUNCTIONs 1. Set C(BOTTOM+N) 0-17 = C(TOP+N) 0-17 4+ C(W0) 0O-17

2, Prune WO

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.02 PAGE 22

POP: PLG Prune last group

FORMAT: plg(N)

FUNCTION: Set C(BOTTOM+N) 0-17 = C(BOTTOM+N) 0-17 =K, if the
difference > C(TOP+N) 0-17, Otherwise, do not
prune group,
K = C(GRPSIZ+N) 0-17, if C(GRPSIZ+N) 0-17 is non-zero

K = C(VARSIZ) 0-17 + 1 if C(GRPSIZ+N) 0-17 is zero,

POP: REMOV Remove

FORMAT: remov(N)

FUNCTION: Make all but one of the words from anchor to floor of
roll N available to other rolls, and put roll N on
the 1list of removed rolls, :

Set C(BOTTOM+N) = 0, and set C(TOP+N) = information
to be used by the interpreter, ‘

POP: OPN Open

FORMAT: opn(N)

FUNCTION: Case 1: C(BOTTOM+N) # 0; i.e,, the roll is already
open

-Go to next pop
Case 2: C(BOTTOM+N) = 0
1. Take roll N off the list of removed rolls

2. Set C(BOTTOM+N) and C(TOP+N) both equal to
C (ANCHOR+N)

NOTE: If all of the available words on the
removed roll were used, C(ANCHOR+N)
points to the remaining word on roll N,
Otherwise, C(ANCHOR+N) points to the
first unused word on roll N,

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BZ.7.02 PAGE 23

POP: RSV Reserve
FORMAT: rsv(N)

FUNCTION: 1, Compute the number of words currently reserved
(w words) w = C(TOP+N) 0-17 - C(ANCHOR+N) 0-17

2., Bump the bottom of roll N by 1 word

3. Set C(word 1) 0-17 = w, Ignore the lower
half of word 1,

L, Set C(TOP+N) 0-17 = C(BOTTOM+N) 0-17
This is illustrated below:

Rol1l N Before Roll N After
Anchor Anchor
w words I
Reserved
Top
Bottom — — |-~~~ 7 -
w ignored
Top, Bottom
Free
0 35 (Ro11 Count =0)
0 35

POP: REL Release
FORMAT: rel(N)

FUNCTION: Case 1: C(TOP+N) 0-17 = C(ANCHOR+N) 0-17; nothing
is reserved

Set C(BOTTOM+N) 0-17 = C(TOP+N) 0-17
Case 2: Roll N contains one or more reserved words

1. Set C(BOTTOM+N) 0-17 = Q-1, where
Q = C(TOP+N) 0-17

2. Recover w, C(Q-1) 0-17 (See RSV pop.)
3. Set C(TOP+N) 0-17 = C(ANCHOR+N) 0-17 + w

MULTICS SYSTEM-PROGRAMMERS”® MANUAL

SECTION BZ.7.02 PAGE 24

This is illustrated below:

Roll N Before Rol1l N After

Anchor Reserved Stin
before last w words reserved w words
RSV
Reserved by T T TTop T T
last RSV f __ _ _ _ __ _|Now in use
Bottom
w Jignored Now free
Top location Q
in use
Bottom
0 35 0 34
POP; RSVM Reserve and mark
FORMAT: rsvm(N)
FUNCTION; Execute mrk(N)
Execute rsv(N)
POP: DNX Down next word
FORMAT: dnx(N)
FUNCTION: 1, Case 1: C(ROLPTR+N) = 0; i.e., C(ROLPTR+N) =
[O | O 0] (Points to bottom,)
0 18 30 35
Set C(ROLPTR+N) = 0 | O M] , where M = N,
0 18 30 35 (Points to top.)
Case 2: C(ROLPTR+N) # 0; i,e.,, C(ROLPTR+N) =
[P | x] M], where M is usually N,
0 18 30 35
Set C(ROLPTR+N) = | P41 [O] M |
0 18 30 35

(Points one word
down,)

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 25
2, If roll M is removed, set C(ROLPTR+N) = O,
and set false

If RP(ROLPTR+N) > C(BOTTOM+M) 0-17, set
C(ROLPTR+N) = 0, and set falsex*

If RP(ROLPTR+N) < C(BOTTOM+M) 0-17, set true
EXAMPLE: Assume initial C(ROLPTR+6) = O

ROLPTR+6 Roll 6
0 0 6 H——Top _
1 0 6 >
2 0 6 >
0 0 0 |—»Bottom
0 18 30 35 0 35
ROLPTR+6 ROLPTR+6 ROLPTR+6
Before dnx(6) After Step 1 After Step 2
Case 1
| 0 1 o o] L’ 0T d 6] [0 T o 6 _|Set true
0 18 30 35 0 18 30 35 0 18 30 35
0 | o 6 1T 1T o 6] (1T T 0O 6] Set true
0 18 30 35 0 18 30 35 0 18 30 35
[1T T o 6| (2 T o 6] [2 T 0o 6]Set true
0 18 30 35 8] 18 30 35 0 18 30 35
| 2 | o 6 | L3 | o 6 | [0 | o _0 | set false
0 18 30 325 0 18 30 35 0 18 30 35

*If roll M is the current read-spill roll (see Paragraph D.2.a),
the interpreter does the following:

1. Determine whether there are more groups in the current
read-spill segment

2, If there are no more groups, set C(ROLPTR+N) = 0, and
set false

If there are more groups, set

C(ROLPTR+N) 0-17 = C(BOTTOM+M) 0-17 - C(TOP+M) 0=-17,
append next section of groups to bottom of roll M, and
set true

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 26

POP: UNX Up next word
FORMAT: unx(N)

FUNCTION: Let Q = C(BOTTOM+N) 0-17 - C(TOP+N) 0-17

1. Case 1: C(ROLPTR+N) = 0; i,e.,
C(ROLPTR+N) = | O CT O |
0 18 30 35

Set C(ROLPTR+N) = P 0 N , where P = Q
8 0 35

Case 2: C(ROLPTR+N) # 0; i,e,,
C(ROLPTR+N) =] P | ignored]
0 18 35

Do not change C(ROLPTR+N)

2. If P=0, then set C(ROLPTR«N) = [0 [O O 1,
and set false 0 18 30 35

If P # 0, then set C(ROLPTR+N) = I P-1 | unchanged,
and set true 18 35

EXAMPLE: Assume initial C(ROLPTR+6) = O

ROLPTR+6 Roll 6
0 0 6 t+——»Top
1 0 6 >
2 0 6 >
0 18 30 35 0 35
ROLPTR+6 ROLPTR+6 ROLPTR+6
Before unx(6) After step 1 After step 2
Case 1
[o ToTollC3 Toll 6] 2 Tol &1 set true
Case 2
(2 Tolell 2 0ol eIl 1 ol 6 1 set true
Case 2
L 1 ol e |11 TolT 6l 0o Tol 61 set true
Case 2
[0 Jo0l 6 1 0 JTol 610 Tal o1 set false
0 18 30 35 O 18 30 35 O 18 30 35

COMMENTS: 1, The interpreter assumes that roll N is not removed
2. N overrides C(ROLPTR+N) 30-35

3. No special action is taken for the read-spill roll,

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ,7.02 PAGE 27

POP: DLOAD Down and Load
FORMAT: dload(N)
FUNCTION: 1, Execute the pop dnx(N)
2, If true condition was set, add 1 to work
counter; and set C(WO) = C(RP(ROLPTR+N)) =--
i.e., load the word pointed to
If false condition was set, do not change work
POP: DNG Down next group
FORMAT: dng(N)

FUNCTION: Let G = C(GRPSIZ+N) 0-17 and let
V = C(RP(ROLPTR+N)) 0-17

Execute the pop dnx(N), with the following
exceptions:

In step 1, case 2; i.e., C(ROLPTR+N) =f P [x[M |
0 18 30 35

If roll N consists of fixed-size groups, set
C(ROLPTR+N) =| P+G | O M |
0 18 30 35

If roll N consists of variable-size groups, set
C(ROLPTR+N) =] P+VaT T O] M]
0 18 30 35

POP; ULOGAD Up and load
FORMAT: uload(N)
FUNCTION: 1. Execute the pop unx(N)
2, If true condition was set, add 1 to work
counter; and set C(WO) = C(RP(ROLPTR+N)) -~
load the word pointed to

If false condition was set, do not change work

MULTICS SYSTEM~-PROGRAMMERS “ MANUAL SECTION BZ.7.02 PAGE 28
POP: UNG Up next group
FORMAT: ung(N)

FUNCTION: Let G = C(GRPSIZ+N) 0-17, (Here, G must be non-zero)
Execute the pop unx(N) w1th the fo]low1ng exception:

In step 2, if P £ 0, set
C(ROLPTR+N) =| P - G Junchanged
18 35

COMMENT: This pop required fixed-size‘groups.

POP: CPY Copy

FORMAT: cpy(N)
M = C(MRKER) 0-17

FUNCTION: 1, Count roll N, to determine the number of words
between the top and bottom of the roll,
w = number of words counted

2, If w= 0, take no further action,

If w # 0, bump the bottom of roll M by w words;
and copy w words (top to bottom) from roll N into
this w-word area of roll M, (Words are copied
sequentially,)

EXAMPLE: mrk(5)

cpy(6)
TOP+5 100000 000000 | BOTTOM+6 | 101002 IOOOOOO_J
TOP+6 101000 000000 _ 0 18
0 18 35
BOTTOM+5 before| 100003 IOOOOOQJ
18
BOTTOM+5 afterl100005 | 000000 |
18 35
Jllustration
Before P After pop
100000 2 0 Top roll 5 100000 2 0 Top roll 5
100 0 100 0
| 200 0 200 0
Bottom 1 0
1000 0
Bottom
101000 1 0 Top roll 6 101000 1 0] Top roll 6
1000 0 1000 0
Bottom Bottom

0 18 35 0 18 35

N

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ,7,02 PAGE 29

POP: CPYR Copy and release
FORMAT: cpyr(N)
FUNCTION: 1, Execute cpy(N)

2., Execute rel(N)

POP: CPYP Copy and prune
FORMAT: cpyp(N)
FUNCTION: 1, Execute cpy(N)
2. Set C(BOTTOM+N) 0-17 = C(TOP+N) 0-17

POP: CPYG Copy group

FORMAT: cpyg(Y)
X and Y are locations of roll pointers
X = C(MRKER) 0-17

FUNCTION: Copy the group starting at location RP(Y) (group A)
to the group starting at location RP(X) (group B).
Either group may be fixed-size or variable-size,
(If variable-size, the roll pointer points to the
VSW.) Group sizes need not be the same.

1. Determine group size of each group, as follows:
G = C(GRPSIZ+M) 0-17 , where M = roll number

If G # 0, group size equals G
If G = 0, group size equals C(VSW) 0-17

2, Copy group A into group B, according to the
following rules;:

a, If group A is a variable size group, do not
copy the VSW, Begin by copying the word
following the VSw,

b, If group B is a variable size group, do not
change the VSW, Copy the first word from
group A into the location following the VSWw,

c. Copy words sequentially

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7,02 PAGE 30

d., If the group size of group A = N words, and
the group size of group B > N words, then copy
group A into the first N words of group B and
set the remaining words of group B to zero,

e. If the group size of group B = N words, and
the group size of group A > N words, then copy
the first N words of group A into group B,

mrk(rolptr+6)
cpyg(rolptr+5)

EXAMPLE :

Assume RP(ROLPTR+5) is the location of the first word of the
following fixed-size group on roll 5;

word 1
word 2
word 3
word L

The following illustrations show how this group would be copied
into different types of groups on roll 6:

3-word 5-word L-word 3-word
Fixed size Fixed size Fixed size Variable size
word 1 word 1 word 1 VSw unchanged
word 2 word 2 word 2 word 1
word 3 word 3 word 3 word 2
word Lt word L4 word 3
Zeros

POP: CPYGB Copy variable-size group from Y pointer to bottom
of marked roll

FORMAT: cpygb(Y)
Y is the location of a roll pointer

M = C(MRKER) 0-17

In the following discussion, RP(Y) is the location
of the VSW of the group to be copied, and
c(vsw) 0=-17 =V

1. Set C(VARSIZ) 0-17 =V
2, Bump bottom of roll M by V+1 words

FUNCTION:

3. Set C(word 1) 0-17 =V
Set C(word 1) 18-35 = 0

L, Copy remaining words (if any) into words 2
through V+1

MULTICS SYSTEM-PROGRAMMERS“ MANUAL

SECTION BZ,.7,02 PAGE 31

EXAMPLE ; cpygb(rolptr+5)
GRPSIZ+5 000000 | 000000 TOP+5 100000 | 000000
GRPSIZ+6 000000 [000000 TOP+6 101000 [000000
0 18 35 0 18 35
ROLPTR+5 |10 [O[S] BOTTOM+6 [102000 | 000000 |
0 18 30 35 0 18 35
MRKER | 000006 | 000000 |
0 18 25
VARSIZ after | 000002 | unchanged |
0 18 35
BOTTOM+6 after | 102003 | 000000 |
0 18 35
Illustration
Roll 5 Roll 6
Anchor Anchor
100000 101000
100010 000002 | ignored 102000 000002 | 000000 01d bottom
000100 | 000000 000100 | 000000
000200 | 000000 000200 | 000000
Bottom 0 18 35 0 18 35 New bottom
POP: CPYX Copy expression
FORMAT: cpyx(N)
M = C(MRKER) O0-17
FUNCTION: Case 1: Roll N is empty
Set false
Case 2: Roll N is not empty
1. Set true »
2. Determine the length of the expression to be

copied, using the following rules:

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.02 PAGE 32

a, The elements of the expression are either
operands or operators:

|l K 0o Tignored|
0 18 20 35
l-word operand

K |3 lignored |
K words 0 18 20 35
1-word operator
K 2 | ignored

0 18 20 35

(K+1)-word operand
where: K > 1

b. Unless the expression consists only of one
operand, its first element is an operator

c. Elements are stored backward (from bottom to
top). The first element appears immediately
above the bottom, but the last element does
not necessarily end at the top,

d. The interpreter scans the elements from
bottom to top, It initially sets a counter
to 1. Each operand subtracts 1 from the
counter, Each operator adds K-1 to the
counter, When the count reaches 0, the
expression ends,

3., Bump bottom of marked roll by number of words to copy

L, Copy expression onto the marked roll,

EXAMPLE ; |
Z =A + B FORTRAN expression Value f counter, after
=Z7Z + A B Polish expression scanning of each element
Location Representation on Roll ‘
B 100000 | Offset of B in 0| anything
roll O 0
A 100001 Offset of A in 0| anything
roll O 1
+ 100002 2 3| code for +
2
Z 100002 | Offset of Z in 0| anything
roll O 1
= 100004 2 3| code for =
2
0 18 20 35 1 (initial value)

B, A, and Z are on links in roll 0, Here, the offsets are the
locations of the VSW”s for these links,

\

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7.02 PAGE 33

POP: CPYXP Copy expression, and prune
FORMAT: cpyxp(N)
FUNCTION: 1, Execute cpyx(N)
2. If true, set C(BOTTOM+N) 0-17 = location of

last word in the expression; i,e,, the word
nearest the top of the roll,

POP: ZBG Zero bottom group
FUNCTION: Let G = C(GRPSIZ+N) 0-17 and V = C(VARSIZ) 0-17
Case 1: G # 0

1. Make ROLPTR+N point to the bottom of
roll N

2. Bump bottom of roll N by G words
3, Set C(word 1) =0, ..., C(word G) = O
Case 2: G =20

1. Make ROLPTR+N point to the bottom of
roll N

2. Bump bottom of roll N by V+1 words
3. Set C(word 1) 0-17 =V ‘
Set C(word 1) 18-35 =0

4, Set C(word 2) =0,..., C(word V+1) = 0,
if wo

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 34

POP: SORTR Sort roll

FORMAT: sortr(N)
Roll N consists of 2-word groups; the first word of each

group is the key,

FUNCTION: sort the groups of roll N (from top to bottom) so that
the keys are in ascending logical order; i.e., the
keys are interpreted as signless 36-bit numbers,

EXAMPLE :
sortr(5)

Roll 5 Before Roll 5 After

top 12 0 top 1 0

N 0 5 0

1 0 12 0

5 0 L 0

1003 0 1003 0

[0 [0

bottom bottom
0 18 35 0 18 35

COMMENT: This pop is used to sort addresses or one-word symbols,
It is not used for sorting signed numbers; in this
case, the positive numbers would precede the negative
numbers,

2, Manipulation of Spill Rolls

a, Spill Rolls_

The following discussion covers the use of spill rolls by a
two-pass compiler or assembler, These rolls cannot be used
by a one-pass procedure,

Assume N-1 is the last roll used, where N = C(OPNERS) 0-17.
Rolls N-1 and N-2 are used as read or write spill rolls, as

described below:

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.02 PAGE 35

Pass 1:

N=1 == Write-spill roll
The interpreter writes data on this roll

N=2 -- Not used
Paés 2:
N-1 == Read spill roll

The interpreter reads data from this roll

N-2 -- Write-spill roll (binary roll)

The interpreter writes data on this roll
Pass 3: WBIN (See WBIN pop)
N-1 =~ Not used
N-2 =-- Read spill (binary roll)
The interpreter reads data from this roll, to
produce text, linkage, and symbol segments
during the execution of WBIN
RSPTR and WSPTR are data segment registers denoting offsets

on the current read- and write-spill rolls, respectively:

RSPTR | offset [ignored | NR] N R - Number of current
0 18 30 35 read-spill roll

NOTE: If C(RSPTR) = 0, there is no current
read-spill roll

WSPTR | offset [ignored | N W] N W - Number of current
0 18 30 35 write-spill roll

NOTE: 1If C(WSPTR) = 0, there is no current
write-spill roll

Words above the location denoted by RSPTR may be discarded.
Words above the location denoted by WSPTR may be written on
an auxiliary data segment, called a write-spill segment,
During pass 1, the write-spill segment is spill segment 1;
any data written on spill segment 1 is read during pass 2,
During pass 2, the write-spill segment is spill segment 2;
any data written on spill segment 2 is read during pass 3.

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 36

The first section of data from the appropriate spill segment

is read via a RWND pop; remaining sections are read via DNG

pops (see the discussions of these pops for details).

The read- and write-spill rolls consist of variable-size groups.

Figure 2 illustrates the setup of these rolls during pass 2:

Anchor of roll N-2 May be placed
on spill seq, 2

RP(WSPTR)—>

Bottom of roll N-2

Floor of roll N-2 May be Anchor of roll N=1
discarded

-<«—RP(RSPTR)

Bottom of roll N-1

Floor of roll N-1

Figure 2, Setup of Read-Spill and Write-Spill Rolls During Pass 2

The following information is true for both the read-spill and the
write-spill rolls:
1. Initially, anchor, top, and bottom are at the same location,

2, Thereafter, anchor is the location of the first word in use;
bottom is one word after the last word in use, and the
distance between top and anchor = total number of words
released,

3, The only significance of top is for roll pointer addressing;
i.,e., the offset of any word on either of these rolls is
fixed, even if information has been released above it.

MULTICS SYSTEM-PROGRAMMERS“® MANUAL SECTION BZ.7.02 PAGE 37

b. Manipulation of Space

Manipulation of spill rolls is summarized below:
Pass 1 == N W = N-1
Assume: 1, Interpreter tried to bump bottom of some roll,
but there was insufficient space in the data
segment,
2, C(WSPTR) £ O
3. RP(WSPTR) > C(ANCHOR+N W) 0-17; i.,e,, there
is available space to release, starting with
the anchor and ending with RP(WSPTR) -1,
Action: 1, Copy words from available space to spill segment 1
(starting with next free location in spill
segment 1),
2. Release the space on roll N W
3. Set C(ANCHOR+N W) 0-17 = RP(WSPTR)
L, Perform any necessary roll movements

Result: C(ANCHOR+N W) 0-17 - C(TOP+N W) 0-17 = cumulative
number of words written on spill segment 1

Example;

zbg(N W) Here, the write-spill roll is the expanding roll

Before After
Anchcr Space Anchor| Copied " RP(WSPTR)*
Available When\w words
Needed New Group
RP(WSPTRY™™ In use Bottom
Free
Bottom Free Space here,
but not
enough Free Floor
Floor work stack
No space Work stack
available
here
*Top was adjusted by

subtracting w words

MULTICS SYSTEM=-PROGRAMMERS® MANUAL SECTION BZ,.7.02 PAGE 38

Pass 2 -= N R = N-1

Assume: 1, Interpreter tried to bump bottom of some roll,
but there was insufficient space in the data segment,

2, C(RSPTR) # O
3. RP(RSPTR) > C(ANCHOR+N R) 0-17; i,e,, there is
available space to release, starting with the
anchor and ending with RP(RSPTR) -1,
Action: 1, Release space
2, Set C(ANCHOR+N R) 0-17 = RP(RSPTR)
3, Perform any necessary roll movements

Result: C(ANCHOR+N R) 0=-17 - C(TOP+N R) 0-17 = Cumulative
number of words released

Comment: In pass 2, roll N-2 may obtain space from roll N-1,
without moving any words, The interpreter merely
adjusts the floor of roll N-2, which is always the
anchor or roll N=1, The interpreter releases only
the required number of words from roll N-1, and saves
the remaining releasable words for future allocation,
During pass 2, usually more words are read than
written, Therefore, the read-spill roll (N-1) should
make space available to the write-spill roll (N-2)
fast enough to eliminate the need for moving any words,
In pass 2, the write-spill roll is manipulated in the
manner described for pasé 1. In this case, however,
the write-spill roll is N-2, and released words are

copied into spill segment 2,

MULTICS SYSTEM-PROGRAMMERS* MANUAL SECTION BZ.7.02 PAGE

RWND _Pop
POP: RWND Rewind

FORMAT: rwnd(N)
N is the number of the current read-spill or
write-spill roll

FUNCTION: Case 1; If C(RSPTR) 30-35 = N, then rewind the
read-spill roll

1. Set C(TOP+N) = C(ANCHOR+N)
Set C(BOTTOM+N) = C(ANCHOR+N)

2, Set C(RSPTR) =0

Case 2: If C(RSPTR) 30-35 # N, then rewind the
write-spill roll

1. Set C(RSPTR) = | 0 [O| N |
0 18 30 35

Set C(WSPTR) = O

2, If current write-spill segment is
empty, go to next pop
Otherwise, perform steps a, b, and ¢

a, Copy remaining words from roll N
(anchor to bottom) to write-spill
segment, (This segment now becomes
the read-spill segment,)

b, Set C(TOP+N) = C(ANCHOR+N)
Set C(BOTTOM+N) = C(ANCHOR+N)
c. Get first section of groups

(implementation dependent) from new
read-spill segment and put them on the

39

bottom of roll N; i.e., bump the bottom

of roll N by the appropriate number of
words, and copy the words from the
read-spill segment to roll N,

~ COMMENT: The RWND pop should be used as follows:

At end of pass 1 -- rwnd(N=-1)

At end of pass 2 -- frwnd(N-1)
rwnd (N-2)

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.,02 PAGE LO

E. CONTROL POPS
Pops
POP: JMP Jump

FORMAT: jmp(Y)
Y is a location in the procedure segment

FUNCTION: 1., Set pop counter equal to Y

2. Execute the pop at location Y

POP: JMPP Prune and jump

FORMAT: jmpp(Y)
Y is a location in the procedure segment

FUNCTION: 1, Prune WO
2. Set pop counter equal to Y

3., Execute the pop at location Y

POP: JNX Jump on no index

FORMAT: jnx(Y)
Y is a location in the procedure segment

FUNCTION: If C(W0O) 7-17 = 0, then execute jmpp(Y)
If C(WO) 7-17 # 0, then set C(WO) 7-17 = C(W0) 7-17 - 1
NOTE: C(WO) 7-17 is called the count field.

EXAMPLE ;

In this example, control passes to jmp(loop) three times; then,

W0 is pruned, and control passes to done,

eaw(3)
loop :pop

jni(done)
Jmp(loop)

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7,02 PAGE 41

POP: DOML Do machine language
FORMAT: doml(Y)

Y is a location in the procedure segment, It is
the location of the first word of a machine language

program
FUNCTION: Execute the GE-645 instruction tra(Y)

COMMENT: Assume that ALPHA is the current C(X1), and that
BETA is the location of the next pop to be
interpreted after leaving the machine language
program, At any location GAMMA, the machine
]angua?e program may return to the interpreter

as follows:
Case Instruction(s)
BETA = ALPHA gamma: tra(popset,ri)
BETA = ALPHA+1 gamma: tra(next,ri)
BETA = GAMMA+1 gamma: trx(x1,popset,ri)
Otherwise gamma: 1dx(x1,beta,du)
tra(popset,ri)

PQPSET and NEXT are locations of ITS pairs in the data segment,

Each ITS pair points to a location in the interpreter segment.

POP: EXEC Execute

FORMAT: exec(Y)
Y is a location in the procedure segment

FUNCTION: Execute the pop at location Y, using the current
value of the pop counter; i,e,, do not set the
pop counter to location Y.

EXAMPLE ;

The following is part of a conversion routine to handle

principal part, decimal scale, and binary scale,

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 442

Assume C(W0) 0-17 = 0 if principal bart is to be converted
1 if decimal scale is to be converted
2 if binary scale is to be converted
The following code appears in the procedure segment:
table; cona(char)
conda(char)
conba(char)

The code below could be used to convert a character

xntv(w0)

exec(table) "execute one of the above three instructions'
jmp(endn) "go here if end-of-1line"

next pop '"go here otherwise"

COMMENT: 1If the executed pop is a JSB pop (see Paragraph F),
then the exit stack records the location following

the EXEC pop (not the location following the JSB pop).

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7.02 PAGE L3

F. SUBROUTINE POPS
Pops
POP: JSB Jump to subroutine
FORMAT: jsb(Y)
Y is a location in the procedure segment. It is
the location of an entry word in a subroutine
FUNCTION: 1, Add 2 to exit counter

2, Set C(word 1) 0-17 = L + 1, where L is the
location of the current JSB pop

Set C(word 1) 18-35 = current work size
Set C(word 2) = 0 (i,e., set false)
3., Execute jmp(Y)

POP: EXIT Exit

FORMAT: exit(N)
N is usually 0,

FUNCTION: 1., Prune two words from the exit buffer

2. Jump to location L + N + 1, where L is the
location of the last executed JSB pop.

3. Restore true/false status that existed before-
the last JSB was executed,
POP; EXITP Prune and exit
FORMAT: exitp(N)
FUNCTION: 1. Execute PRWX pop
2. Execute exit(N) pop

COMMENT: exitp(N) is equivalent to prwx()
exit(N)

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.,02 PAGE Lu

POP: PRE Prune exit
FORMAT: pre(Y)

FUNCTION: Subtract 2 * C(Y) 0-17 from exit counter; i.e., prune
exit stack by C(Y) 0-17 pairs of words

EXAMPLE :

Assume a program contains the following subroutine calls:

[subroutine 1 |

calls

[subroutine 2 |

calls
Y
| subroutine 3 |
Assume C(C2) =[000002 | 000000 |
0 18 35

To return directly from a location in subroutine 3 to location
ALPHA in subroutine 1, the user would write:

pre(c2)
jmp(alpha)

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7,02 PAGE L5

G. ADDRESS SUBSTITUTION POPS
The locations WO through W5, and DO through D5 are treated
as pops when they appear as operands with other pops; e.g.,
add(w0). Another group of pops, A0 through A5, are also
in this category (see Argument Pops below).
Pops
POP: The work pops: WO, W1, W2, W3, Wi, and W5
FORMAT: pop(Wn)
n=0,1,2, 3, 4, or 5

FUNCTION: 1, Form a new pop whose left half is the location
of Wn and whose right half is "pop"

2. Execute this new pop
EXAMPLE
Assume that the work counter is set at 777005,

add(w3) look like this: | 6 | 335 |
0 18 35

The interpreter converts this to: |[777002 | 6 |
0 18 35

This means: Set C(W0) = C(wO) + C(777002)

COMMENT: If a work pop has a true or false tag, the tag
is added to Wn, and the test is made before step 1.
POP: The dummy pops: DO, D1, D2, D3, D4, and D5
FORMAT: pop(Dn)
n=20,1,2, 3, 4, or 5

FUNCTION: 1., Form a new pop whose left half is C(Dn) 0-17
and whose right half is "pop"

2. Execute this new pop

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7,02 PAGE L6

EXAMPLE
Assume that the dummy counter is set at 777u05
777404 [3000 | 0 | |
0 18 35
add(d1) looks like this: | 6 | 42 |
0 18 35
The interpreter converts this to: | 3000 [6 |
0 18 35

This means: Set C(WO) = C(WO) + C(3000)
COMMENT: If a dummy pop has a true or false tag, the tag is
added to Dn, and the test is made before step 1.

POP: The argument pops: AOQO, A1, A2, A3, AL, and A5
FORMAT: pop(An)
n=0,1,2, 3, 4, or 5

FUNCTION: Get the argument of 'pop" from the argument list of
the last executed JSB pop,

Assume the last executed JSB pop is at location L,

Location Pop
L+0 ésb(YO)
L+1 ort(Y1)
L+2 bort(Y2)
L+3 bort(Y3)
L+ bort(Yug
L+5 bort(Y5

NOTE: The subroutine should be terminated by the pop
exit(5), so that none of the BORT pops will be

executed,

1. Form a new pop whose left half is Yn and
whose right half is " pop"

2. Execute this new pop

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.02 PAGE u7

EXAMPLE
Assume that the last JSB pop is at location L and that

locations L through L+2 contain the following data:

L j jsb
L+1 a bort
L+2 b bort
0 18 35
add(al) looks like this: [6 | 366 |
0 18 35
The interpreter converts this to: [a I 6

0 18 ZJ
This means: Set C(WO) = C(W0O) + C(a)
COMMENTS: 1, 1If an argument pop has a true or false tag,
the tag is added to An, and the test is made
before step 1,

2, The use of BORT pops in forming the argument
list insures against a possible bug in the pops
procedure, If control accidentally reaches
one of these pops, the interpreter will abort
the procedure,

3, The number of BORT pops depends on the number
of arguments, If there are more than 5 arguments,
then an XNDW pop must precede any reference to
the sixth (or succeeding) argument,

L, The argument indices and the exit indices are
off by one; e.g., termination of a subroutine
by exit(0) would set the pop counter to

location L+1,

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7,02 PAGE u8

H. INDEX POPS

Each index pop is followed by another pop, and it modifies the
operand of this following pop. This modification affects only
the execution of the modified pop; it does not change the
representation of the pop in the procedure segment,

Pops

POP: XNTF Index next table by fixed

FORMAT: xntf(Y)
pop(Z)

FUNCTION: Use Y + Z instead of Z
EXAMPLE: See Figure 3

COMMENT: The following coding illustrates the use of the
XNTF pop:

1: xntf(3)
m: stor(table)

jmp(1) "To store in TABLE+3"
jmp(m) " To store in TABLE"
POP: XNTV Index next table by variable

FORMAT: xntv(Y)
pop(Z)

FUNCTION: Use C(Y) 0-17 4+ Z instead of Z
EXAMPLE: See Figure 3

POP: XNIF Index next indirect by fixed

FORMAT: xnif(Y)
pop(Z)

FUNCTION: Use Y + C(Z) 0-17 instead of Z
EXAMPLE: See Figure 3

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.02 PAGE 49
POP: XNIV Index next indirect by variable

FORMAT: xniv(Y)
pop(Z)

FUNCTION: Use C(Y) 0-17 4+ C(Z) 0-17 instead of 2
EXAMPLE: See Figure 3
POP: XNPF Index next pointer by fixed

FORMAT: xnpf(Y)
pop(Z)

FUNCTION: Use Y 4+ RP(Z) instead of Z
EXAMPLE: See Figure 3
POP: XNFP Index next fixed by pointer

FORMAT: xnfp(Y)
pop(Z)

FUNCTION: Use RP(Y) + Z instead of Z
EXAMPLE: See Figure 3
POP: XNPV Index next pointer by variable

FORMAT: xnpv(Y)
pop(Z)

FUNCTION: Use C(Y) 0-17 + RP(Z) iInstead of Z
EXAMPLE: See Figure 3
POP: XNVP Index next variable by pointer

FORMAT: xnvp(Y)
pop(Z)

FUNCTION: Use RP(Y) + C(Z) 0-17 instead of Z
EXAMPLE: See Figure 3
POP: XNDW Index next work, dummy, or argument

FORMAT: xndw(Y)
pop(Z)

FUNCTION: Add C(Y) 0-17 to work, dummy, or argument address
EXAMPLE: See Figure 3

MULTICS SYSTEM-PROGRAMMERS*

Data Segment Setup

Location

100 5 ignored

2001 700 ignored

300 2 ignored |

MANUAL SECTION BZ.7.02 PAGE 50

Some characteristics of roll 5

C(TOP+5) 0-17 = 120000
ROLPTR+5 = 1 x| 5
0 18 30 35

RP(ROLPTR+5) = 120001

0 18 35
EXAMPLES ;
xntf(3) xntv(100)
= stor(403) = stor(405)
stor (400) stor (400)
xnif(3) xniv(100)
= stor(703) = stor(705)
stor(200) stor(200)
xnpf (3) xnfp(rolptr+5)
= stor (120004) = stor (120004)
stor(rolptr+5) stor(3)
xnpv(100) xnvp(rolptr+5)
= stor(120006) = stor(120006)
stor(rolptr+5) stor(100)
xndw(300)
= stor(w1)
stor(w3)
. Xxndw(300)
= stor(d1)
stor(d3)
xndw(300)
= stor(as)
stor(a3)

Figure 3,

Examples of the Index Pops

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.02 PAGE 51

General Comments
1. XNDW is the only indexing pop that can be followed by
an address substitution pop.
2, XNFP and XNVP are faster than XNPF and XNPV, respectively,
3, The foi]owing example illustrates a complex use of the
XNTV pop:

xntv(w0)
stor(400)

Assume WO is at location 777000 in the data segment,
and that it has the following format:
wo | 000007 [000000]

0 18 35
xntv(w0) looks like this: [354 [332 |
0 18 35
The interpreter converts this to: | 777000 | 354 |
0 18 35

Thus, the modified pop is: stor(L07)

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 52

I. MOVE POPS
Pops
POP: MOV Move

FORMAT: mov(Y)
to(z)

FUNCTION: Set C(Z) = C(Y) and skip the pop to (Z)

NOTE: The interpreter ignores the number of the pop
following the MOV pop

EXAMPLE ;
mov(c3)
to(varsiz)
C3 | 000003 | 000000 |
0 18 35
VARSIZ after | 000003 | 000000 |
0 18 35

COMMENTS: See TO

POP: TO

FORMAT: mov(Y)
to(Z)

FUNCTION: See MOV

COMMENTS: 1, The TO pop should not be executed alone, However,
the user may allow a certain number of illegal
executions of the TO pop to occur before an abort,
by setting TOCNT, a one-word register in the data
segment,

When a TO pop is executed alone, the interpreter
adds 1 to C(TOCNT). If C(TOCNT) is O or positive,
an abort occurs, If C(TOCNT) is negative, an error
message is printed (e.g., EXECUTED TO POP AT
015610); and the interpreter executes the next pop.

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ,7,02 PAGE 53

2, The following rules apply to the MOV and TO pops:

a, The TO pop must have the same tag (true, false,
or none) as the MOV pop has

b. The TO pop cannot be indexed

c. The operand of the TO pop cannot be an address
substitution pop

NOTE: The following code is permitted:
Indexed Move | Move with Address Substitution Pop

xnpf(5) mov (w3)
mov(rolptr+6) to(alpha).
to(alpha)

3. The following comparative code shows the advantage
of the MOV pop:

Fast ' Slower Even Slower
mov (Y) cload(Y) load(Y)
\~ES£52/ stor(Z) storp(z)
2 pops in one Pushes down and

pops up work

POP: MOVF Move from
FORMAT: movf(Y)
FUNCTION: Set C(FROM) 0-17 =Y

FROM is a one-word register in the data segment,
(The interpreter ignores C(FROM) 18-35)

EXAMPLE: See MOVT
COMMENTS: See MOVT

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BZ.7,02 PAGE 54

POP: MOVT Move to

FORMAT: movt(Y)
FUNCTION: Move n consecutive words from starting location
C(FROM) 0-17 to starting location Y,
n = C(W0) 0-17
FROM is a one=-word register in the data segment,
(The interpreter ignores C(FROM) 18-35,)
EXAMPLE: In this example, the words at locations ALPHA -- ALPHA+7
are moved to locations BETA -- BETA+7.
ceaw(7)
movf (alpha)
movt(beta)
COMMENTS ¢ 1. Each MOVF overrides the preceding MOVF
2., Any number of MOVT pops may follow a MOVF pop
3, Any number of pops may be executed between a
MOVF pop and a MOVT pop
L, There are no restrictions concerning true/false
tags, or the use of address substitution pops
5. Words are moved in a forward sequence; thus, the
upward move on the left works and the downward
move on the right does not work:
Upward Move Downward Move
Before After Before After
Position 1 X 1 X
Position 2 X 2 X
Position 3 X 3 X
Position 4 11 L 1 1
Position 5 2 5 2 2
Position 6 3 6 3 1
Position 7 L 7 L 2
Position 8 5 5 5 1
Position 9 6 6 6 I 2
Position 10 |7 7 7 1
Position 11 X 2
Position 12 X 1
Here, the numbers in the left Here, the numbers in the left
~column were moved up 3 positions column were moved down 2 to
‘to form the right column, The form the right column, The

boxed numbers were moved, boxed numbers were moved,

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ,7.02 PAGE 55
J. INPUT POPS

1. Character Input

The source of character input is an input stream., There
are two types of input streams: the source procedure, and
strings, The source procedure is the ASCII text in the
input segment; e.g., FORTRAN source procedure, String
input consists of portions of type-1, type-2, or type-3
strings, as summarized below:

string Input Stream

Type-1 Excludes count-character and characters not
included in the count

Type=-2 ‘Excludes end-of-file character and any
characters that follow it

Type=-3 Excludes the two control words at the beginning
of each group of the string

Characters excluded from a string direct the interpreter in
delimiting the string.

The source procedure comes from a file that was previously
created on the console, Type-1 and type-2 strings come from
SYMBUF or rolls, Type-3 strings come from rolls,

There is only one input stream at a time; this is called the
current input stream, Initially, the current input stream
is the source procedure,

The input stream can be changed by a SWIP or a SWAP pop.

The SWIP pop nests input streams; this is similar to the
nesting of subroutines by JSB and EXIT: swip(0) corresponds
to the EXIT pop; and swip(Y), where Y # 0, corresponds to
the JSB pop. On the other hand, the SWAP pop is similar to
the JMP pop, in that it changes input streams without

changing nesting.

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ,7.02 PAGE 56

2., Input Registers
The input registers reflect the status of the current input

stream, The status may be one of the following:

Initial -~ Signifies beginning of line (applicable only to
the source procedure)

Normal -- Signifies middle of line or string

End-of-file -- Signifies no more lines, if current input
stream is the source procedure
Signifies no more characters, if current
input stream is a string

The input registers are one-word registers in the data segment:

TLYIN -- GE-645 tally word, Points to next available character
in the current input stream,

NOTE: TLYIN points to a location in the data segment,
If the current input stream is the source -
procedure, this location is in a buffer containing
information which the interpreter copies from
the input segment,

MODES -- C(MODES) 0-17 = -1 if current input stream is the
source procedure
Location of NXST file, if current input
stream is a string (See NXST.)

C(MODES) 18-35 = 0 if current status is normal
-2 if current status in initial
-6 if current status is end-of=-file

CHARC =- C(CHARC) 0-17 = Column number of current input
character, (On a source procedure line,
the leftmost character occupies
column 1,)

CHAR -~ Representation of current character in the input stream,
as it appears in the TRANS table (See Chapter 1,
Paragraph G.2.b.)

L Keys ASCIT or Keys
0

spec, char
e) 18 35

MULTICS SYSTEM-PROGRAMMERS“® MANUAL SECTION BZ,7.02 PAGE 57

CRDNUM -~ C(CRDNUM) 0-17 - Must be zero

C(CRDNUM) 18-26 = Number of last group processed
in current type-3 string

C(CRDNUM) 27-35 - Must be zero
CRDNUM+1 -- C(CRDNUM+1) 0-17 - Must be zero

C(CRDNUM+1) 18-26 = Number of groups in current
type-3 string

C(CRDNUM+1) 27-35 - Must be zero
SWIP and SWAP initialize all necessary input registers
for a new current input stream., The character input
subroutine shared by the next character and next string
pops updates the input registers each time it fetches a

character from the current input stream,

3. Character Input Pops

Pops

POP: NXCH Get next character

FORMAT: a: nxch()

FUNCTION: 1, If status is end-of-file, execute the pop
in location 2 in the procedure segment, This
will usually be a JMP or a JSB pop.

If status is initial, then change it to normal;
and get next character, if any,

If status is normal, then get next character,
if any,

2, Case 1; If successful in getting another
character

a, Add 1 to column number
b. If this character is to be skippedl,< get

next character, if any, and go back to
beginning of step 2,

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ,.7.02 PAGE 58

C.

Case 2:

If this character is octal 201, then set
status to end-of-file and jump to location
a+1 in the procedure segment,

If this character is octal 000, octal 001,

« «» Or octal 177, then store the character
ang its keys in CHAR and jump to location
a+2,

If unsuccessful in getting another character,
and input is from the console

Try to get the next line:

If unsuccessful, set status to end-of-file, and

3

iump to location a+1

If successful, set status to initial, set column
number to O, add 1 to alter number, and jump to
location a+1

Case 3;:

If unsuccessful in getting another character,
and input is from a roll

If this is the end of a type~1 or type-3
string, set end-of-file condition, and jump
to location a+1

If this is a type-2 strin the unsuccessful
condition cannot occur, ?nce these strlngs
are terminated with an end-of-file
character (octal 201).

EXAMPLE: See PAKA, Paragraph K

POP: NXST Next string

FORMAT: a: nxst(Y)

Y is the location of a 3-word file;

location of key roll # if non-0
Y word SYMBUF if O

type of string Pack-from option
Y+1] 1, 2, or 3 0 = off non-0 = on
Y+2 | Used only by NXSTCS, SWIP, and SWAP

0

18 55

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.02 PAGE 59

C(Y) 0-17 -~ Location of word with keys in bits
0-8 and 18-35

C(Y) 18-35 -- Roll into which string is to be
packed (or SYMBUF if 0)

C(Y+1) 0-17 -~ Type of string to be formed

C(Y+1) 18-35 -- Option determining whether
C(CHAR) 9-17 is to be packed into
the string

FUNCTION: Pack the characters from the current input
stream into SYMBUF or on a roll, forming a type-1,
type-2, or type-3 string., Pack characters from
left to right. If the string is being formed
on a roll, start forming the string at the bottom
of the roll, If the string is being formed in
SYMBUF, assume that an RSYM pop was executed, and
start forming the string in the first location
in SYMBUF,

1. Initialize string according to its type

2, If the pack-from option is on, then pack
C(CHAR) 9-17 into the string

3, Simulate NXCH pop, with exceptions noted below

L, Case 1: If successful, compare keys in CHAR
with keys specified in key word,
If one or more bits match, terminate
the string according to type, and jump
to location a+2 in the procedure
segment, (Also perform Case 2.cC)
Otherwise, pack C(CHAR) 9-17 into the
string, and go back to step 3.

Case 2: If unsuccessful, perform the following
- steps:

a, Terminate string according to type

b. Set C(CHAR) = [000000 777777
0 18 35

c., If the string was formed on a roll,
then make the correspondin? roll
pointer point to the location of the
first word in string

d. Jump to location a+1 in the procedure
segment

COMMENT: On end-of-1ine, the interpreter goes to the next
pop (same as NXCH).

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 60

POP: NXSTC Next string continued
FORMAT: a: nxstc(Y)

FUNCTION: Continue forming a string (with an option to pack the
current character),
Execute NXST pop, eliminating step 1.

EXAMPLE: In this example, the interpreter forms a string in
SYMBUF, beginning with a left parenthesis and ending
with a right parenthesis,

FILE1 KEY 1 0 KEY1 000000]000003]
1 1 0 18 35
not used
0 18 35

Assume the keys have the following meaning:

Bit 34 -- 1 if~ (escape character)
Bit 35 -- 1 if)

Assume that the current character is a left parenthesis,

Code;
rsym()
nxst(filet) "pack initial left parenthesis and
string up to break"
jmp(error) "special case if end of line"
more:scha(trans+octal(176)) "advance if escape"
Jjmp(error) "special case if end of line"
Jmp(done,) "right parenthesis encountered
instead"
nxstc(file1l) "continue string with escaped
character"
jmp(error) “"special case if end of 1line"
Jmp(more) '"test break character"
done :pak(char) "pack terminal right parenthesis"
cnts() - ""count the string"

COMMENT: On end-of-line, the interpreter goes to the next
pop (same as NXCH).

Y

MULTICS SYSTEM=-PROGRAMMERS “ MANUAL SECTION BZ.7.02 PAGE 61

POP: NXSTCS Next string continued and save

FORMAT: a: nxstcs(Y)
Y is the location of a file with the same format
as the file for NXST. (See NXST.)

FUNCTION: Save next available position in type-3 string,
and then continue forming string,

1. Set C(Y+2) = coded information describin
current input character and next available
position in string being formed

2, Execute nxstc(Y)

COMMENTS: 1. NXSTCS may not be used to form type-1 or
type-2 strings

2., The pops swip(Y) and swap(Y) use the information
in Y+2 to determine whether to switch to the
beginning of an input stream or to a saved
position in the stream,

If C(Y+2) = 0, swip(Y) or swap(Y) switches

to the beginning of the stream, The pops
procedure is responsible for clearing C(Y+2),
whenever necessary,

3. On end-of=-line the interpreter goes to the
next pop (same as NXCH).

POP: NXICH Get next initial character

FORMAT: nxich()

FUNCTION: If the current status is normal, get the first
character of the next line
If the current status is end-of-file, execute the
pop in location 2 of the procedure segment
If the current status in initial, get the first
character of the current line

COMMENT: 1, This pop can only be used with the source
procedure, It cannot be used with string
input,

2, On end-of-line, the interpreter goes to the
next pop (same as NXCH),

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ,7.,02 PAGE 62

L4, Changing Input Streams
Pops

POP: SWAP Swap input streams
FORMAT: swap(Y)

Y is the location of a file with the same format as
the file for NXST. (See NXST.)

If C(Y) 18-35 = 0, the new input stream is in SYMBUF

If C(Y) 18-35 = N, the new input stream is on roll N
and RP(ROLPTR+N) is the location of the first word

FUNCTION: Change current input stream, as directed by the file
at location Y,

If C(Y+2) = 0, set C(CHARC) = O

Otherwise, set CHAR and CHARC according to coded
information in C(Y+2) (See NXSTCS.)

COMMENTS: 1, If Y = 0, then the interpreter aborts the pops
procedure

2, SWAP can only change the input stream to SYMBUF
or a roll

POP: SWIP Switch input streams recursively

FORMAT: swip(Y), where Y # 0 (Here, Y is the location of a
or file with the same format as
swip(0) the file for NXST.)

FUNCTION: Case 1: The operand is Y; Y#0

1. Bump bottom of roll 4 (swip roll) by three
words

2, Use these three words to record current
position in current input stream for later
use by a swip(0)

- 3. Execute swap(Y); i.e. chan?e input streams
as directed by the fife at location Y

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7.02 PAGE 63
Case 2: The operand is O
1. Get three words off the bottom of roll L

2., Use these words to recover current position
in a previous input stream

3, Change to previous input stream, as directed
by these words

4L, Prune roll 4 by three words
COMMENT: 1, It is illegal to change the input stream to
a type-3 string using a swip(Y) pop, if a
type-3 string is already nested

2. The swip(Y) pop can only change the input stream
to SYMBUF or a roll

3., The input stream can be changed to the source
procedure only by the appropriate number of swip(0)

pops.
5. Changing Mode

Pops
POP; MODB Mode blank

FORMAT: modb()

FUNCTION: Cause NXCH to accept any character; i.e., after this
pop, NXCH will accept any character, until the
next MODNB pop says otherwise,

POP: MODNB Mode non-blank

FORMAT: modnb(Y)
Y is usually a location the the TRANS table,
C(Y) 9-17 = character to be skipped
modnb() is equivalent to modnb(trans+octal (40)) --
blank is 040

FUNCTION: Cause NXCH to skip the character whose code matches
C(Y) 9-17
If Y = 0, then NXCH will skip blanks,

EXAMPLE: In this example, NXCH gets the next non-blank
character
modnb ()

nxch()
jmp(endin)

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 6k
K. STRING MANIPULATION POPS

Pops

POP: CNTS Count symbol

FORMAT: cnts(Y)

FUNCTION: Assume SYMBUF contains a type-1 string

Count the number of characters and the number of
words in type-1 string in SYMBUF,

Set C(SYMBUF) 0-8 = number of characters in string,
Set C(SYMCNT) 0-17 = number of words in string.

If Y is a non-zero, then set C(Y) 0-17 = number of
words in string,
Otherwise, do not change C(Y) 0-17,

This is illustrated below:

SYMCNT
SYMCNT+1
SYMBUF

W l The interpreter would change
Wand C, IfY # 0, C(Y) 0-17
c | [] would be set to W, NOTE:
0 9 18 27 35 W =C/4 + 1 (ignoring remainder)

POP: RSYM Reset symbol buffer
FORMAT: rsym()

FUNCTION: Assume SYMBUF contains a type-1 string

Count the type-1 string currently in SYMBUF (i.e.,
count the number of words and the number of
characters in SYMBUF),

Change the count field of the string to zero,

Chan?e the remaining characters in the string
to blanks

Set C(SYMCNT)

=0
Set C(SYMCNT+1) =

0

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 65
POP: PAK Pack
FORMAT: pak(Y)

FUNCTION: Insert C(Y) 9-17 immediately to the right of the
last character inserted into SYMBUF
C(Y) 9-17 is a 9-bit ASCII character

EXAMPLE: pak(char)

The character 1 would look like this in CHAR: [keys| 061] keys]
-9 18

0 35
If SYMBUF contains the null string, the interpreter sets
C(SYMBUF) as follows: 10 N B B
0 9 18 27 35

POP; PAKR Reset and pack
FORMAT: pakr(Y)

FUNCTION: 1, Execute RSYM pop
2, Execute pak(Y) pop

POP: PAKA Pack and advance
FORMAT: paka(Y)

FUNCTION: 1, Execute pak(Y) pop
2. Execute NXCH pop

EXAMPLE: The following codin? causes the interpreter to keep
packing characters into SYMBUF, until it receives

a blank:
modb () ’ "accept blanks" ‘
rsym() ""reset symbol to blanks"
loop; nxch() '"get next character")
jmp(endlin) '"'special case if end of line"
sch(trans+octal (40)) "octal 40 is blank"
jmp(b1k,t) " jump if blank"
paka (char) "otherwise, pack in symbol,
and advance"
jmp(endin) "special case if end of line"
Jjmp(loop+2) "continue"
blk: cnts() "count the symbol"

COMMENT: On end-of-line, the interpreter goes to the next
pop (same as NXCH).

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ,7.02 PAGE 66

POP: PAKAR Reset, pack, and advance

FORMAT: pakar(Y)

FUNCTION:

COMMENT :

POP; PLXP
FORMAT: p
FUNCTION:

EXAMPLE :
PIxp(5)

Assume the

1. Execute RSYM pop
2. Execute pak(Y) pop
3, Execute NXCH pop

On end-of-1line, the interpreter goes to the next pop

(same as NXCH).

Plex put

1xp(N)

Given a type-1 string in SYMBUF, put a plex on the
bottom of roll N, The string need not have been
counted,

1. Count the string in SYMBUF (i.e., count the number
of words and the number of characters)
w = number of words

2. Bump bottom of roll N by w+1 words

3. Move type-1 string from SYMBUF to word 1 -- word w
(inclusive)

L, Set C(word w+1) 0-17 = w (the lower half of this
word is used by the interpreter,)

type-1 string "continue" is in SYMBUF,

Roll 5 after

8 C o) n 01d bottom
t i n u
e | B

3 special

0

9 18 27 35 New bottom

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.02 PAGE 67

POP; PLXG Plex get
FORMAT: plxg(N)

FUNCTION: Given a plex on the bottom of roll N, form a type-1
string in SYMBUF,

1. Recover number of words in string (w words)
from the last word of the plex (word w+1)
w = C(word w+1) 0-17 (See PLXP)

2, Move word 1 -- word w (inclusive) to SYMBUF --
SYMBUF + w = 1 (inclusive)

3. Set C(SYMCNT) 0-17 = w
L, Set C(SYMCNT) 18-35 = O
5. Set C(SYMCNT+1) = C(word w+1)
6. If the previous string in SYMBUF had more than
w words, then fill these words with ASCII
blanks,
EXAMPLE :
PIxg(5)

Assume roll 5 contains the plex shown in the example for PLXP,

PIxg(5)

SYMBUF after

SYMCNT 3 0
SYMCNT+1 3 special
SYMBUF 8 C 0 n
t 1 n u
e | B B 1B
0 9 18 27 35

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 68

POP: PLXM Plex make
FORMAT: plxm(N)

FUNCTION: Convert a type-1 string into a plex. Assume the

following:

RP(ROLPTR+N) is the location of the VSW of the last
group on roll N,
The bottom of roll N follows the last word of the

string

This group contains a type-1 string.

The string has been counted (i.,e,, the number of
words and the number of characters have been counted)

NOTE: The group need not have been counted

Let w = number of words in the string

1. Bump bottom of roll N by 1 word

2, Set C(word 1) 0-17 = w (The lower half of

this word is used by
the interpreter)

3. Set C(VSW) 0-17 = w41

Set C(VSW) 18-35 =0

EXAMPLE ;
pixm(5)

Assume the last group on roll 5 is the string, "continue",

Rol11 5 after

L

8 C o) n

t i n u

e | Bl BB
3 special

01d bottom

0 9 18 27 35 New bottom

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7,02 PAGE 69

POP: CCAT Concatenate
FORMAT: ccat(N)

FUNCTION: Concatenate a type-1 string in SYMBUF to a type-1
string in roll N,

Assume the following:

RP(ROLPTR+N) is the location of the first word
of the second type-1 string

The bottom of roll N immediately follows the
last word of the second type-1 string

Both type-1 strings have been counted (i,e,,
the number of words and the number of characters
have been counted)

1. Bump bottom of roll N if the concatenated string
requires more words,

2, Add the character count of the first string
to the character count of the second string.

3, Concatenate the first string to the second
string,

L, Insert trailing blanks into the last word,
if necessary,

EXAMPLE
ccat(5)

Assume SYMBUF contains the string, "to'", and RP(ROLPTR+5)
is the location of the string, 'go".

Resulting string in roll 5;:

4 | g o) t
o P B 7S old bottom
0 9 18 7 35 npew bottom

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7.02 PAGE 70

L. SYNTAX POPS

Pops

POP: FEX Set FEXIT

FORMAT: fex(Y)

FUNCTION: Set C(FEXIT) 0-17 =Y
FEXIT is a one-word register in the data segment,
(The interpreter ignores C(FEXIT) 18-35)

POP: PSAV Position save

FORMAT: psav()

FUNCTION: 1. Bump bottom of roll 2 (save roll) by four words

2, In these four words, record the current status
of the input stream,

EXAMPLE: See PRES

POP: PRES Position restore

FORMAT: pres()

FUNCTION: If C(BOTTOM+2) 0-17 # C(TOP+2) 0-17, go back to last
saved position; and remove four words from roll 2,

Otherwise, take no action
EXAMPLE :
Input stream: ABCDEF

Pop Character read

nxch() A

popnop()

psav()

nxch() B

popnop()

nxch() C

popnop()

pres()

nxch() B

popnop()

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7;02 PAGE 71

POP: PDES Position destroy
FORMAT: pdes()

FUNCTION: If C(BOTTOM+2) 0-17 # C(TOP+2) 0-17, prune four
words from the bottom of roll 2

MULTICS SYSTEM-PROGRAMMERS ® MANUAL SECTION BZ.7.02 PAGE 72
M. COUNTING POPS

Pops

POP: ZER Zero

FORMAT: zer(Y)

FUNCTION: Set C(Y) = O

POP:; ZERD Zero double
FORMAT: zerd(Y) Y is an even address
FUNCTION: Set DP(Y) =0

POP: ONE One
FORMAT: one(Y)

FUNCTION: Set C(Y) 0-17 =1
Set C(Y) 18-35 =0

POP: INC 1Increment
FORMAT: 1inc(Y)
FUNCTION: Set C(Y) 0-17 = C(Y) 0-17 +1

POP; DCR Decrement
FORMAT: dcr(Y)

FUNCTION: 1, If C(Y) 0-17 = 0, set false
If C(Y) 0-17 # 0, set true

2, If true, set C(Y) 0-17 = C(Y) 0-17 -1
EXAMPLE ;

In this example, control passes to loop three times; then control
passes to the pop after jmp(loop,t).
: ceaw(3)
stor (alpha)
loop: pop

°

dér(alpha)
Jmp(loop, t)

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BZ.7.02 PAGE

N. CONVERSION POPS
The following number will be used to demonstrate the use of
the conversion pops:
1.5e2b17
This number is equivalent to the fraction;:

1,5 * 10%*2
2%%17

It is represented in octal as follows:

| 000226 [000000 | (226 octal = 150 decimal)
0 18 35

The number consists of three parts:
1.5 == Principal part, If a sign preceded this number,
the interpreter would not consider the sign to
be included in the principal part,

e2 -- Decimal scale. The decimal scale may be positive
or negative,

b17 -- Binary scale, The binary scale may be positive
or negative,

1. Setting Mode
The interpreter uses the data-segment register CONMOD, to

determine whether a number to be converted to binary format
is to be treated as a decimal number or an octal number,

it has the following format:

CONMOD | 0 = dec, 1 = oct,] ignored |
0 18 35

73

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 73a

Pops_That Set CONMOD

POP: MODD Decimal mode
FORMAT: modd()
FUNCTION: Set C(CONMOD) 0-17 = 0; i,e,, cause decimal conversions

POP: MODO Octal mode
FORMAT: modo()
FUNCTION: Set C(CONMOD) O0-17 = 1; i,e.,, cause octal conversions

MULTICS SYSTEM-PROGRAMMERS® MANUAL

2, The Number Buffer

Number conversions occur in the following group of contiguous

SECTION BZ.7.02

data-segment registers, the number buffer:

PAGE 74

CONBUF Principal part (ignoring the decimal
point) changed to binary, A two-
CONBUF+1 | word signless integer,
FCNT # of digits to Set to 0 and
' right ot dec, pt, | ignored
SIGN Sign of number, 0 = 4
non=-zero = -
DSCALE Jf after e Set to 0 and
Pos, or neqg. ignored
BSCALE JF after b Set to 0 and
Pos, or neqg, ignored
DSIGN Sign of dec, scale| Set to 0O and
0=+, nonzero = =~ ignored
BSIGN Sign of bin, scalel O=no bin, scale #
0 = +, nonzero = -| 1=bin, scale #
0 718 18 35

The user sets the following registers in the number buffer:
FCNT, SIGN, DSIGN, and the upper half of BSIGN, The following
coding is recommended for this purpose:

To signify a negative number -- one(sign)

To signify a negative decimal or binary scale -- one(dsign)
or one(bsign)

To count each digit to the right of the decimal point --
inc(fcnt)

The interpreter sets all the other registers (including the lower
half of BSIGN) as directed by the conversion pops,

EXAMPLE

The number buffer would be set as follows for the number 1,5e2b17,
Assume decimal conversion throughout,

CONBUF 0 0

CONBUF +1 0 15

FCNT 1 o]
SIGN 0

DSCALE 2 I 0
BSCALE [17 0

DSIGN 0

BSIGN 0 1

0 8 18 35

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 75 -

Pops That Set Registers in the Number Buffer
POP: RNUM Reset number

FORMAT: rnum() .
FUNCTION: Set the 8 wordé in the number buFFer'to zero

POP: CON Convert principal part

FORMAT: con(Y)
Y is usually CHAR

FUNCTION: Let integer DP(CONBUF), and digit = C(Y) 14=-17,
(Digit is a number from 0 through 9,)

Octal conversion - Set integer = 8*integer + digit
Decimal conversion - Set integer = 10¥integer + digit

These formulas convert the pr1nc1pal part from
left to right, digit by digit,

Following conversion, the entire principal part = N
DP(CONBUF), 1gnoring any decimal point or sign, |
POP: CONA Convert and advance

FORMAT: cona(Y)
v Y is usually CHAR

FUNCTION: 1, Execute con(Y) pop
| 2, Execute NXCH pop 4
COMMENT: On end-of=-1ine, the interpreter goes to the next pop
(same as NXCH) : : o
POP: CONR Reset and convert
FORMAT: conr(Y)
FUNCTION: 1, Execute RNUM pop

2, Execute con(Y) pop

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 76

POP: CONAR Reset, convert, and advance
FORMAT: conar(Y)
FUNCTION: 1, Execute RNUM pop
2. Execute con(Y) pop
3, Execute NXCH pop
COMMENT: On end-of-1ine, the interpreter gdes to the next pop
(same as NXCH)
POP: CONBA Convert binary scale, and advance
FORMAT ; conba(char)
CHAR is always assumed to be the operand for this pop,
regardless of the operand.
FUNCTION: 1. Let integer = C(BSCALE) 0-7,
4 and digit = C(CHAR) 14-17,
(Digit is a number from 0 - 9)
Octal conversion - Replace integer by 8% 1nteger
+ digit , '
Decimal conversion - Replaces integer by 10*
1nteger + digit
- NOTE: This pop is normally preceded by a MODD pop.

The formula converts the binary scale From left
to right, digit by digit.

Following conversion, the entire signed binary
scale = C(BSCALE) 0-7

2., Set C(BSIGN) 18-35 = 1,
3; Execute NXCH pop

COMMENT: On end-of-1line, the interpreter goes to the next pop
(same as NXCH)

POP: CONDA Convert decimal scale, and advance

- FORMAT: conda(char)

CHAR is always assumed to be the operand for this pop,
regardless of the operand

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.,7.,02 PAGE 77

FUNCTION: 1, Let integer = C(DSCALE) 0-17,
and digit = C(CHAR) 14-17,
(Digit is a number from 0 = 9)

Octal conversion - Replace integer by 8%
integer 4 digit.

Decimal conversion - Replace integer by 10%*
integer t digit.

NOTE: This pop is normally preceded by a MODD
pop.

The formula converts the decimal scale from
left to right, digit by digit.

Follow1ng conversion, the entire signed decimal
scale = C(DSCALE) O- 17

2, Execute NXCH pop.

COMMENT: * On end-of-1ine, the interpreter goes to the next.
pop (same as NXCH)

3. Conversion and Storage of Binary Numbers

The following pops convert binary numbers in the number buffer
to fixed-point or floating-point numbers of single or double
precision,

Pops }
POP: FXDS Convert to fixed-point, single-precision

FORMAT: fxds(Y)
Y is the location of a single word in the data segment

~ FUNCTION: Convert the number in the number buffer to a
fixed-point, single-precision number, and store
the number in Y.

EXAMPLE: See FLTD .
POP: FXDD Convert to fixed-point, double-precision

FORMAT: fxdd(Y)
Y and Y+1 are the locations of a pair of words in
the data segment, Y is an even location.

FUNCTION: Convert the number in the number buffer to a fixed-
point, double-precision number, and store the
number in Y and Y41, The high-order bits are in Y,
and the low-order bits are in Y41,

EXAMPLE: See FLTD

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BZ.7.02 PAGE 78

POP: FLTS Convert to floating-point, single-precision

FORMAT: f1ts(Y)
Y is a location of a single word in the data segment

FUNCTION: Convert the number in the number buffer to a floating-
point, single-precision number, and store the number in

EXAMPLE: See FLTD

POP: FLTD Convert to floating-point, double-precision

FORMAT: f1td(Y)
Y and Y+1 are the locations of a pair of words in the
data segment :
Y is an even location,

"FUNCTION: Convert the number in the numEer buffer to a floating--
point, double-precision number, and store the number
in Y and Y+1, The high-order bits are in Y, and the
low-order bits are in Y41, ’

EXAMPLES :

Assume that ALPHA is an even location in the data segment, and
that the number buffer is set as shown in the example on page 744,

Pop ALPHA after ALPHA+1 after
fxds(alpha) [000226 | 000000 unchgn?eg
fxdd(alpha) 000226 | 000000 000000 | 000000

flts(alpha) | 020454 | 000000 | unchanged
f1td(alpha) [020454 | 000000 | 000000 iOQOOOO
0 18 350 18 35

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 79
O. PRECISION ARITHMETIC POPS
The precision arithmetic pops use a two-word register,

located in the data segment:

MPAC MPAC+1
] 36 bits | 36 bits |
Even 0dd

1. Fixed-Point Operations

Double-precision fixed-point‘numbers are integers ranging
from =2%*71 through 2%**71 - 1,

EXAMPLES :

|_400000 | 000000 [000000 [000000 | =2%%*71
0 18 350 18 35

\ 777777 1777777 1777777 |777777 |
0 18 350 18 35

| 000000 | 000000 | 000000 | 000000 | 0
0 18 35 0 18 35

[_ 000000 [000000 | 000000 | 000001 | 1
0 18 350 18 35

(377777 1777777 1777777 1777777) 2%%71 - 1
0 18 350 18 35

]
—_

Pops

Each of the following pops requires a single-precision operand,
" However, several of the pops require extension of C(Y). Here,
extension means that the interpreter prefixes‘C(Y) with 36 |
bits, each of which is a copy of C(Y) 0. (See -1 and 1 in

the examples above.)

POP: PADD Precision add
FORMAT: padd(Y)

FUNCTION;: Set DP(MPAC) = DP(MPAC) + C(Y) where C(Y) is
extended to double precision

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BzZ.7.02 PAGE 80
EXAMPLES : |
padd(aipha)

MPAC before [OUDDUD DODOOTT DODOOO T DOOOOD ~ 2#+36
0 8 350 18 35

ALPHA extended| 00000 T D000 _O00OOT TU0D000] ~ 2++18
0 18 35 0 18 35 (extended)

MPAC after :llllll | 000001 | 00000 000000
‘ 8 0 8 35
padd(alpha)
MPAC before | DO0O0000 | 000001 [000000 | 0OO0000] 2%**36
8 55 0 18 5

0

ALPHA extendeleWWW ~24%18

0 18 0 18 35 (extended)
MPAC after | 000000 [QQQQQ9| 777777] 000000 |

0 8 50 18 35

POP: PSUB Precision subtract
FORMAT: psub(Y)

FUNCTION: Set DP(MPAC) = DP(MPAC) - C(Y) where C(Y) is extended to
double precision ' :

EXAMPLES ;
psub(alpha)
| MPAC before 2%%36
0 8 35 0 18 35
ALPHA extended[DODDDD] U00O0D_T DODDOT [QOODO] ~ 2++18
(8 5 (extended)
MPAC after
0 8 50 18 35
psub(alpha)
MPAC before 000000 1 000001 1 000000 1 000000 | 2%%*36
0 18 350 18 35
ALPHA extended{ 777777 1777777 | 777777 [000000 | =2**18
0 18 35 0 18 35 (extended)

MPAC after (000000 [000001 | 000007] 000000 |
0 8 35 0 T8 35

MULTICS SYSTEM-PROGRAMMERS © MANUAL

POP:

PMLT Precision multiply

FORMAT: pml1t(Y)
FUNCTION: Set DP(MPAC) = C(MPAC+1) * C(Y)

POP:

PMLTD Precision multiply double

FORMAT: pmltd(Y)

SECTION BZ.7.02

PAGE 81

FUNCTION: 1., Set DP(MPAC) = DP(MPAC) * C(Y)
2. Truncate product to 72 bits, if necessary.
If truncation is necessary, set false
I1f no truncation is necessary, set true
EXAMPLE :
pmiltd(alpha)
MPAC before 2%%37 4+ 1
0 8 8 35
- ALPHA 000000 0000 3
0 18 35
MPAC after
(Set true)

POP; PDVD Precision divide
FORMAT: pdvd(Y)

FUNCTION: 1. Set DP(MPAC) = DP(MPAC) / C(Y)
Extend the quotient to double precision
Note: 1If the quotient falls outside the range
from -2%%35 to 2%*35 - 1, a divide
check error occurs.
2. Set C(RMD) = remainder
RMD is a one-word register in the data segment
EXAMPLE :
pdvd(alpha)
MPAC before [_000000 | 000000 | 000000 | 000007] 7
0 18 35 0 18 35
ALPHA [000000 1 000003 | 3
0 18 35
MPAC after 000000 | 000000 000000 | 000002 2
0 18 35 0 18 35
RMD (000000 | 000001 | 1

0 18 35

N

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BZ.7.02 PAGE 82

2. FEloating-Point Operations |

Double-precision floating-point numbers consist of an exponent, e,
which is an integer ranging from -128 to +127 in steps of 1; and
a mantissa, m, which is a fraction ranging from -1 to 1 -2%%-63
in steps of 2%%-63, (For further information, see the GE-635
Programmers © Reference Manual.) These numbers are subject to
the following restrictions: | |

For negative numbers, -1 < m < -1/2

For zero, m = 0 and e = -128

For positive numbers, 1/2 < m < 1

Both m and e are in two’s complement form
The floating-point number m * 2%%e is represented in the MPAC
register as follows:

MPAC MPAC+1

=1 Ml]
0 8 35 0 35

Pops
Each of the following pops requires a double-precision operand,

The user can extend a single-precision number to double precision,
by moving it to an even location and setting the following odd

location to zero:

ALPHA [&1 __m]

0 8 55
BETA, BETA+1 (_e] m [000000 | 000000 |
0 8 355 0 18 55

where C(ALPHA) is extended via the following pops:
mov(alpha)
to(beta) "BETA must be an even location"
zer(beta+1)

CAUTION: Overflow may occur in each of the following operations]

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 83 N

POP: PADDF Precision add floating
FORMAT: paddf(Y)
FUNCTION: Set DP(MPAC) = DP(MPAC) + DP(Y)

EXAMPLE:

paddf(alpha)

MPAC before |06€700 | 000000 |OOOOOO [OOOOOO' 7.00 = 7/8 % 2%*3
0 8 5

ALPHA (002700 [000000 | 000000 IOOODOOI 1.75 = 7/8 % 2%¥1
0 8 350 8 35

MPAC after [010430 | 000000_J 000000 [000000 | 8.75=35/64 * 2%y
0 8 50 18 35

POP: PSUBF Precision subtract floating
FORMAT: psubf(Y)
FUNCTION: Set DP(MPAC) = DP(MPAC) =~ DP(Y)

POP: PMLTF Precision multiply floating
FORMAT: pmi1tf(Y)
FUNCTION: Set DP(MPAC) = DP(MPAC) * DP(Y)

POP: PDVDF Precision divide floating
- FORMAT: pdvdf(Y)
FUNCTION: Set DP(MPAC) = DP(MPAC) / DP(Y)

3. Conversion Operations
Pops
POPs “FLT Float

FORMAT: f1t(Y)
C(Y) is a single-precision integer

FUNCTION: Set DP(MPAC) = C(Y) converted to a double-precision N\
floating-point number '

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7.02 PAGE 8.4

EXAMPLE ;
flt(alpha)
ALPHA | 000000 Iooooo1 | 1 (fixed point)
0 18 35
MPAC after | 002400 | 000000 | 000000 [000000 | 1 (floating point)
0 18 35 0 18 35

POP: FIXS Fix Single

FORMAT: fixs(Y)
C{Y) is a single-precision floating-point number
Y may be an even or odd address

FUNCTION: Set DP(CONBUF) = C(Y) converted to a double-precision
fixed-point integer,

POP: FIXD Fix Double

FORMAT: fixd(Y)
DP(Y) Is a double-precision floating-point number
Y must be an even address

FUNCTION; Set DP(CONBUF) = DP(Y) converted to a double-precision
. fixed-point integer

EXAMPLE :

fixd(mpac)

MPAC | 002400 | 000000 | 000000 | 000000 | 1 (floating point)
0 18 35 0 18 35

CONBUF afterl 000000]oooooo]*ooooool 000001] 1 (fixed point)
T8 350 18 35

MULTICS SYSTEM-PROGRAMMERS* MANUAL SECTION BZ.7.02 PAGE 85

P. SET POPS
The set pops compare two items to determine whether a certain
condition is met, If the condition is met, they set the true
indicator, If the condition is not met, they set the false
indicator,
1. Algebraic Comparisons
Algebraic comparisons involve 36-bit signed integers, The
largest number is octal 377777777777 (2%%35 - 1), The
smallest number is octal L0OOO00000000 (-2%*35),
Pops
POP: SGT Set on greater than
FORMAT: sgt(Y)
FUNCTION: Set true if C(W0) > C(Y) algebraically

Otherwise, set false
POP: SGTP Set on greater than, and prune
FORMAT: sgtp(Y)

FUNCTION: 1, Set true if C(WO) > C(Y) algebraically
Otherwise, set false

2. Prune WO

POP:; SEQ Set on equal
FORMAT: seq(Y)

FUNCTION: Set true if C(W0O) = C(Y)
Otherwise, set false

POPz.'SEQP Set on equal, and prune
FORMAT: seqp(Y)
FUNCTION: 1, Set true if C(WO) = C(Y)

Otherwise, set false
2, Prune WO

\

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 86

POP; SLT Set on less than
FORMAT: sl1t(Y)

FUNCTION: Set true if C(WO) < C(Y) algebraically
Otherwise, set false

POP: SLTP Set on less than, and prune
FORMAT: sl1tp(Y)

FUNCTION: 1. Set true if C(WO) < C(Y) algebraically
Otherwise, set false

2. Prune WO

2, Masked Comparisons

Pops
POP: SME Set on masked equality

FORMAT: sme(Y)
Y is an even address

FUNCTION: Set true if C(WO) k = C(Y) k, whenever C(Y+1) k = 0
(ignoring all other bits)
Otherwise, set false,

EXAMPLE :
sme (alpha)

w0 112255 | LL5566
ALPHA /716255 | 443526 In this case, set true
ALPHA+1 707070] 707070 |
0 18 35

POP: SMEP Set on masked equality, and prune

FORMAT: smep(Y)
Y is an even address

FUNCTION: 1. Set true if C(WO) k = C(Y) k, whenever C(Y+1) k = O
(ignoring all other bits)
Otherwise, set false

2. Prune WO

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 87 <N

POP: SME1 Set on masked equality in W1

FORMAT: smel(Y)
Y is an even address

FUNCTION: Set true if C(W1) k = C(Y) k , whenever C(Y+1) k = O
(ignoring all other bits)
Otherwise, set false

POP: SME2 Set on masked equality in W2

FORMAT: sme2(Y)
Y is an even address

FUNCTION: Set true if C(W2) k = C(Y) k, whenever C(Y+1) k = O

(ignoring all other bits)
Otherwise, set false

POP: SMEI Set on masked equality indirect

FORMAT: smei(Y)
Y is an even address

\
FUNCTION: Set true if CéRP(WO)) k = C(Y) k , whenever
C(Y+1) k = 0 (ignoring all other bits)
Otherwise, set false
POP: SMEIP Set on masked equality indirect, and prune
FORMAT: smeip(Y)
Y is an even address
FUNCTION: 1, Set true if C(RP(WO)) k = C(Y) k , whenever
C(Y+1) k = O (i%noring all other bits)
Otherwise, set false
2. Prune WO
POP: SMEB Set on masked equality on bottom
(See ERB.)
FORMAT: smeb(Y)
Y is an even address.
FUNCTION: Set true if C(B) k = C(Y) k , whenever
C(Y+1) k = 0 (ignoring all other bits)
\

Otherwise, set false

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ.7.02

3. Bit Comparisons

Pops

POP: SEV Set on even

FORMAT: sev()

FUNCTION: Set true if C(WO) 17 =0
Otherwise, set false

POP: SEVS Set on even in storage

FORMAT: sevs(Y)

FUNCTION: Set true if C(Y) 17 =0
Otherwise, set false

POP; SCA Set on comparative and

FORMAT: sca(Y)

FUNCTION: Set true if C(WO) .,and, C(Y) # O
Otherwise, set false

EXAMPLE ;-

PAGE 88

The following is a test to determine whether bit 7 or bit 8 of

CHAR is 1:

ceaw(octal(3000))
sca(char)
jmp(bothoff, f)

The CEAW pop puts 1 in bits 7 and 8 of WO, and 0 in each of

the other 34 bits,

POP; SCAP Set on comparative and, and prune
FORMAT: scap(Y)

FUNCTION: 1. Set true if C(wW0) .and, C(Y) # O
Otherwise, set false

2. Prune WO

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 89

POP; SNZ Set on non=-zero
FORMAT: snz()

FUNCTION: Set true if C(WO) # O
Otherwise, set false

POP: SNZS Set on non-zero in storage
FORMAT: snzs(Y)

FUNCTION: Set true if C(Y) # 0
Otherwise, set false

POP: SCNT Set on roll count
FORMAT: scnt(N)

FUNCTION: Set true if C(TOP+N) 0-17 # C(BOTTOM+N) 0-17
Otherwise, set false

L, Character Comparisons

Pops

POP: SCH. Set on character equal
FORMAT: sch(Y)

FUNCTION: Set true if C(CHAR) 0-17 = C(Y) 0-17
Otherwise, set false

POP: SCHA Set on character equal, and advance
FORMAT: scha(Y)

FUNCTION: 1, Set true if C(CHAR) 0-17 = C(Y) 0-17
Otherwise, set false ‘
2, If true, execute NXCH pop i
If false, skip a pop

EXAMPLE: The following two pops would cause a blank to be
suppressed:
a: scha(trans+octal(u40))
Jjmp(endin)

The following pops would suppress all leading blanks:
a: scha(trans+octal(40))
Jjmp(endin)
Jjmp(a,t)

COMMENT: On end-of-line, the interpreter goes to the next
pop (same as NXCH)

“N

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 90

POP: SCKY Set on character keys
FORMAT: scky(Y)
FUNCTION: Set true if C(CHAR) 18-35 ,and. C(Y) 18-35 # O
Otherwise, set false
POP: SCKYA Set on character keys, and advance
FORMAT: sckya(Y)
FUNCTION: 1. Set true if C(CHAR) 18-35 .and. C(Y) 18-35 # O
Otherwise, set false
2, If true, execute NXCH pop
If false, skip a pop
EXAMPLE :
sckya(alpha)

Assume the TRANS table entries for comma and semicolon are:

TRANS+ octal 54]'OOGﬁSM [OOZOO%I -- comma
g 18

TRANS+ octal 73 gﬁﬁﬁgii:ggiﬁﬁﬁg; -- semicolon

In this example, a 1 in bit 23 signifies a semicolon, and a 1

in bit 25 signifies a comma,

C(ALPHA) Result
Case 1: [0 | 2000| Set true and execute NXCH pop if ,
Case 2:) [10000] Set true and execute NXCH pop if ;

Case 3: I_L_u_zmn_l Set true and execute NXCH pop if ,
18 35 or ;

COMMENT: On end=-of-1ine, the interpreter goes to the next pop
(same as NXCH)

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 91 -~

5. Null Comparisons

The following pops make no comparisons, but simply set true

or false,

Pops
POP STRU Set true

FORMAT: stru()
FUNCTION: Set true

POP: SFAL Set false
FORMAT: sfal()
FUNCTION: Set false

6. Symbol Comparisons ~
Pops

POP SSKY Set on symbol key
FORMAT: ssky(Y)

FUNCTION: Set true if C(Y) .and, C(SYMKEY) # O
Otherwise, set false

COMMENT: The dser must be sure that C(Y) 0-17 = 0, since
this is a full-word comparison. (See ORKEY.)

POP; SSKYA Set on symbol key, and advance
FORMAT: sskya(Y)

FUNCTION: 1, Set true if C(Y) .and, C(SYMKEY) # O
Otherwise, set false
2, If true, execute the pop at location 1 of the
procedure segment
If false, go to the next pop

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 92

POP: SSY Set on symbol
ssy(Y)
Y is the location of the first word of a type-1 string

FORMAT ;

FUNCTION:

Assume SYMBUF contains a type=-1 string

10
20

Count the type=-1 string in SYMBUF.

Compare the string in SYMBUF with the string
starting at location Y. This is a word-by-word
comparison,

. If all words match, set true

Otherwise, set false

POP: SSYA Set on symbol, and advance to next symbol if equal

FORMAT :

FUNCTION:

COMMENTS :

ssya(Y)

Y is the location of the first word of a type-1 string

Assume SYMBUF contains a type-1 string

1.
2,

3.

Count the type-1 string in SYMBUF.

Compare the strin? in SYMBUF with the string
starting at location Y. This is a word-by-word
comparison,

If all words match, set true
Otherwise, set false

If true, execute the pop at location 1 in the
procedure segment

If false, go to the next pop

The pop at location 1 is usually a JMP or a JSB

ssya(symbol) is equivalent to ssy(symbol)
exec(1,t)

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ,7.02 PAGE 93 -~

Q. REQUIRE POPS

The require pops compare two items to determine whether a
certain condition is met, If the condition is met, the
interpreter goes to the next pop (or advances), If the
condition is not met, the interpreter executes the syntax
fail routine. The syntax fail routine executes a PRES pop

and jumps to the location specified by FEXIT (see FEX).

1. Symbol Comparisons

Pops
POP: RSY Require on symbol
FORMAT: rsy(Y)
FUNCTION: Assume SYMBUF contains a type-1 string N
1. Count the type-1 string in SYMBUF
2. Compare the string in SYMBUF with the string
starting at location Y. This is a word-by-word
comparison,
3. If all words match, go to next pop.

Otherwise, execute syntax fail routine,

POP: RSYA Require on symbol, and advance.
FORMAT : rsya(Y)
FUNCTION: Assume SYMBUF contains a type-1 string
1. Count the type-1 string in SYMBUF.
2. Compare the strin? in SYMBUF with the string
starting at location Y. This is a word-by-word
comparison.

3. If all words match, execute the pop at location N
1 of the procedure segment.

Otherwise, execute syntax fail routine.

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 94

POP RSKY Require on symbol key
FORMAT: rsky(Y)
FUNCTION: Go to next pop if C(Y) .and. C(SYMKEY) # O

Otherwise, execute syntax fail routine,

POP : RSKYA Require on symbol key, and advance
FORMAT: rskya(Y)
FUNCTION: If C(Y) .and. C(SYMKEY) # 0, execute the pop at

location 1 of the procedure segment,

Otherwise, execute syntax fail routine,

2, Character Comparisons

Pops
POP RCH Require on character equal

FORMAT: rch(Y)
FUNCTION: Go to next pop if C(CHAR) 0-17 = C(Y) 0-17

Otherwise, execute syntax fail routine

POP: RCHA Require on character equal, and advance

FORMAT: rcha(Y)

FUNCTION: Execute NXCH pop if C(CHAR) 0-17 = C(Y) 0-17
Otherwise, execute syntax fail routine

COMMENT: On end-of=-line, the interpreter goes to the next
pop (same as NXCH)

POP: RCKY Require on character keys
FORMAT: rcky(Y)
FUNCTION: Go to next pop if C(CHAR) 18-35 .and. C(Y) 18-35 # O

Otherwise, execute syntax fail routine

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 95

POP: 'RCKYA Require on character keys, and advance

FORMAT: rckya(Y)

FUNCTION: Execute NXCH pop if C(CHAR) 18-35 ,and, C(Y) 18-35 # O
Otherwise, execute syntax fail routine,

COMMENT: On end-of-line, the interpreter goes to the next

pop (same as NXCH)

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ.7.02 PAGE 96

R. SEARCH POPS
1. General

The search pops search a roll for a search item matching a given

item called a clue.

Two types of rolls may be searched: 1linked and non-1linked,

A linked roll consists of variable-size groups that are linked
on threads via link words. Each link word contains the address
~of the next logical link word on the thread. A 1linked group is

set up as follows:

VSW

step region¥*

link address | hash -- Link Word
type-1 string or remai?ger of search item;
0 8 5

* May be any number of words

The 1ink address is 0 if no more links follow; otherwise, it
is the location of the next link word., For roll 0 it is an

absolute location; for rolls 1-63 it is relative to the top.

If the ciue is a type-1 string, then the interpreter computes
the hash; in this case, the hash is not included in the clue
or in the search item, If the clue is not a type-1 string,
~the interpreter uses the right half of the first word of the
clue as the hash; in this case, the hash is included in the

clue and in the search item,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 97

The step region contains any pertinent information describing

the search item,

A non-linked roll may consist of fixed or variable-size groups.

It is set up as follows:

(possibly) VSW
step reqion*
search item*

0 35

* May be any number of words

Ro11 O must be set up as a linked roll, Rolls 1-63 may be

linked or non-1inked,

2. Types of Threads
Two types of threads are used for linked groups, depending

on the roll number and on the type of clue to be matched:

Thread Type Clue Rol1l Number
1 Type=-1 string 0
2 Type-1 string 1-63
{Anything else 0-63

There are 32 type-1 threads. There may be any number of
type-2 threads.

The first 32K of.roll 0 (after the first eight words) consists
of one page for each type-1 thread. The links in this area
are contiguous., 1If the total requirement for a type-1 thread
exceeds 1024 words, the excess words are stored somewhere

in the 32K area after page 31.

MULTICS SYSTEM-PROGRAMMERS # MANUAL SECTION BZ.7.02 PAGE 98

EXAMPLE
Assume that the first four links for thread n (a type-1 thread)

take up 1024 words:

Roll O Blown up picture of page n
Page O link 1 - thread n
link 2 - thread n
v link 3 - thread n
Page n Jink 4 - thread n
0 35

Page 31

Link 5-thread n

Miscellaneous
1inks

Link 6-thread n
0 35 ,
The thread table for roll O contains an entry for each type-1-

thread:

{ 0 or non-zero dgnored |
0 18 35

Here 0O means that the thread is empty. A non-zero value gives
the absolute location of the first 1ink word on the thread. The

thread table THREAD is located in the data segment.

Links for type-2 threads in roll 0 are placed after page 31 by
the interpreter. The user may start such a thread in the first
7 -word group-on roll 0, provided that the step size is 0-6

and C(ROLPTR) = 0, Otherwise, these type-2 threads must emanate
from the step region of a type-1 thread. 1In each case, all

subsequent links are placed after page 31.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 99 “N

EXAMPLE :
Rol11 O

p [[00000% J000000
Step region of [|Step word <—Step region for type-2 thread
type-1 thread _ c
-

X
b hashi
“ ::EI]E::EE]:E%:
g 500005000000 |
' Step word 1 ‘
’ Ste% word 2

! b [[000000 | hashj |«—End of type-1 thread

! S 1A B C
\ D | E P
\
\ Below thread 31

AN jjzzzzzjﬁﬁ;ﬁﬁgj
v | Step word
~x[d 1 Y

_|«~—End of type-2 thread

NOTE: If the type-1 thread is thread T, C(THREAD+T) 0-17 = a

The type-1 thread is connected by a solid arrow, The type-2
thread is connected by dashed arrows. X, Y and Z are 18-bit
constants, most likely offsets on some other roll (pointing

to other information).

3, The Search File
The search file for srch(Y), srchp(Y), 1inkn(Y), and 1inkp(Y)

has the following format:

— MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 100

0 - not rel,links
non-0 - rel.links

1 , 0 - non-masked
Y+ step size non-zero - masked

Y roll number (N)

of words in
Y+2 clue ignored

Y43 Tells whether clue
is type=-1 string

Y4k mask (if any) -# of bits in mask
must match # of bits in clue *

0 18 35

location of clue

* May be any number 6f words
The items in the search file have the following functions:
C(Y) 0-17 - Number of the roll to be searched
C(Y) 18=35 - In a search file for roll 0, C(Y) 18-35 is ignored
: In
~ ¢

search file for another roll containing links,
18-35 = non=-zero

a
)
In a search file for another roll not containing
links, C(Y) 18-35 =0

C(Y+1) 0-17 - Number of words in step region

. C(Y+2) 0-17 =~ Number of words in clue (computed by interpreter for
type-1 strings).

C(Y+3) 0 - If 0, the clue is not a type-1 string
If 1, the clue is a type-1 string
Bits 1-17 are ignored.
C(Y+3) 18-35 = A location in the data segment, usually SYMBUF

1f this field contains -1, C(MRKER) 0-17 is the
location of a roll pointer which points to clue,

If this field contains -2, C(MRKER) 0-17
specifies the location of the clue.

This permits the clue to be in the work stack.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ,7.02 PAGE 101 Y

Mask - The mask is used, only if selected portions of the clue
are to be compared. 1In the mask, a 1-bit means ignore
and a 0-bit means compare, The number of words in the
mask matches the number of words in the clue: 1if there
is no mask, the search file is L-words; if there is a
'mask, the search file is L-words plus the number of

words in the clue.
Masks may be used only for non-1inked searéhes.

The Folldwing search file is for step size 2 and

type=-1 strings in roll O:

0 0 “N
|2 0
0 0
-1__|[SYMBU
0 18

L4, Linked Searches

If there are no 1inks on the roll to be searched, the search

is unsuccessful., Otherwise, the interpreter begins a linked

search by determining the proper thread to search and the

location of the first link on that thread. 1t uses one of

the following methods:

Type-1 thread -- The interpreter computes the thread number
and looks in the thread table to obtain the

location of the first 1ink wdrd in the thread.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION Bz.7.02 PAGE 102

Type-2 thread -- In this case, the user must make ROLPTR+N point
7 to the vsw of the first link on the thread. The
:‘interpreter computes the absolute location of
the VSWw, and adds the number of words in the
step region p1us one to determine the location

'oF the 11nk word

Next, the interpreter computes the hash number of the-:clue.

(See Paragraph R.1.)

A I

The interpreter then starts the.search by comparing the hash in
the first link word with the hash of the clue, 1If they matoh,
and the clue is not a type-1 string, the search is succeeeFdl.
I1f they match, and the clue is a type-1 étring,‘the%interpreter
compares the clue words with the search item words; if they do

. not. match (very rare), it looks for another occurrence of the

~: same hash, . If the two hashes do-not match, the interpreter -

uses the link word to determine the address- of the next 1link
word | The interpreter cont1nues this process -until it finds

- ~a match .or reaches the end of ;the thread.

5. Non- Linked Searches

I1f there are no. groups on the rol] to be searched then the
search is unsuccessfu1 Otherwise the interpreter assumes that
RP(ROLPTR+N) = location of the First word: (or VSW) of a group;
it locates the first item according to one of' the following

equations:

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 103 -
For fixed-size groups -- Search item location =
RP(ROLPTR+N) + step size
For variable-size groups =-- Search item location =
RP(ROLPTR+N) + step size +1
Next, the interpreter compares the search item with the
clue., If the comparison is unsuccessful, the interpreter
simulates the pop dng(N) to find the first word of the

next group.

The interpreter continues its search, until it is successful,

or until it reaches the bottom of the roll.
Pops

POP: SRCH Search
FORMAT: srch(Y)
Y is the location of a search file (See Paragraph R.3.)
FUNCTION: 1. Perform the search as directed by the search file
2, If successful, make CURPTR and ROLPTR+N point to
the location of the first word of the group
containing the clue, and set true.

CURPTR is a one-word register in the data segment
with the following format:

P - (offset rela-
tive to top of N ignore N
0 0 5

CURPTR is a roll pointer; it points to
P + C(TOP+N) 0-17

1f unsuccessful, set C(ROLPTR+N) = 0, and set
false -~

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 104

EXAMPLE :

In this example, the user scans for a left parenthesis and
then searches for a symbol,

modnb() '"ignore blanks"

rsym() "reset symbol to blanks"
Toop: nxch() ""get next character"

Jmp(endin) "special case if end of line"

sch(trans+octal(50)) '"octal 50 is left parenthesis"

Jmp(loctr+3,t) "jump if left parenthesis"

pak(char) "otherwise, pack in symbo1l"

jmp(1oop) " . ..and continue"

cnts() "count the symbol"

srch(sfile) "search for it"

jmp(absent, f) "jump if unsuccessful"

POP: SRCHP Search Put
FORMAT: srchp(Y)

Y is the location of a search file (See Paragraph R.3.)
FUNCTION: 1. Perform the search as dirécted by the search file

2, If successful, perform actions indicated for SRCH
pop. If unsuccessful, perform steps 3-10.

3, Set false
L, Determine number of words to create (n words)
5. Allocate space for group, as follows:
Rol11l 0, type=1 thread - If there is room on the
page corresponding to the thread, allocate
space at the bottom of the page

If there is no room on the page, allocate
space on the bottom of the roll

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 105

EXAMPLES :

NOTE: The first time the interpreter determines
that there is no space available on a
page, it closes the page; even if a
subsequent 1ink will fit on the page,
it is not put there,.

Rol1l 0, type-2 thread -- Allocate next available
space on the bottom of the roill

Roll 1-63 -- Allocate next available space at
the bottom of the roll

I1f this is a variable size group, create VSWw,
as follows:

T

Fi11 the step region with zeros,

Create 1ink word, if necessary. (The link
address of this word is 0.)

Set the 1ink address of the previous 1link word
(1f any) in the thread to the absolute or
relative location of the newly created link
word,

Copy the clue,

Make CURPTR and ROLPTR+N point to the location
of the first word of the newly created group.

Assume that the user wants to form a type-2 thread on roll 6,
This is the only thread on roll 6. To accomplish this, he
writes the following code:

pru(6)
srchp(file1l) "“"The search will fail, and the clue
will be put on roll 6,"

To put a new link on the same thread, the user writes:

zer(rolptr+6)
srchp(filel)

~ MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 106

POP: LINKN Link next
FORMAT: 1inkn(Y)

Y is the location of a search file (see Paragraph R.3.).
Here, only the first two words are applicable:

Y roll number(N) Ignored

Y+1 search step Ignored
18 55

FUNCTION: Assume RP(ROLPTR+N) is the location of the VSW of a
linked group on roll N,

If C(1link word) 0-17 = 0, set false

0therwxse ‘make ROLPTR4+N point to the VSW of the next
link in the thread; and set true.

XAMPLE ;
~ E LE
linkn(alpha)
ALPHA [000005 000000 TOP+5 l 100000 000000
ALPHA+1 [_0000Q 000000) 0 18 35

0 18 35

ROLPTR+5 before [I[;ZEQ
" 0 35

ROLPTR+5 after [200 T O TS
; 5 18 30 35

The true condition would be set.

Illustration

Roll 5
1001005 0
step region
' 03 | hashi#
~ -
100200 S 0
} step region
0 hashif

U s 20

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 107 -~

Comments: 1. This pop can use a search file set up for
a search pop. In this case, it simply
ignores all information except C(Y) 0-17
and C(Y+1) 0-17,
2. The interpreter gets N from the search
file. 1t assumes C(ROLPTR+N) 30-35 = N,
POP: LINKP Link put
FORMAT: 1inkp(Y)
Y is the location of a search file (see Paragraph R.3,).
FUNCTION: Assume RP(ROLPTR+N) is the location of the VSW
of the last 1ink on roll N, Also assume that the
first word of the clue is special: the left half
is ignored, and the right half is to be used as
hash :

Place a 1ink on the bottom of roll N, according
to the specifications of the search file: -

1. Determine number of words to create
2. Allocate space for 1link

3. Create VSW

L, Fill the step region with zeros

5

. Create link word: zero in left half, followed
by right half of first word of clue

6. Make the link word in the previous link point
to the newly created 1ink word.

7. Copy the remainder of the clue (if any)
8. Make CURPTR and ROLPTR+N point to the location
of the first word of the newly created 1ink
EXAMPLE .
1inkp (alpha)

- ALPHA 5 1 N\
ALPHA+1 2 0
ALPHA +2 1 0
ALPHA 43 0120000
0 8 35

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 108

20000 [Ignored] 767 | ROLPTR+5 [__100 stg
0 18 30 35
TOP+5 [_100000]000000] BOTTOM+5 [OT Toﬁ“:@o
0 18 5
Roll 5
1001003 0

step region
1003 676 Upper half set by pop (rest of group unchanged)

1010000 3] O | 01d bottom
0

0 step region
0 [767

POP . TSRCH Table search
FORMAT: tsrch(Y)

IfY # 0, then Y is the even location of a 2-word search
file

Otherwise, FTAB, a two-word register in the data segment,
is the location of the search file

Search File

word] table location 0
word 0| # of table entries
U 17 18 55
C(word 1) 0-17 =-- Location of table consisting of L-word entries.

The first two words of each entry are the key,
and the keys are in ascending logical order.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 109

The following illustration shows how the keys are sorted:

(2 TdToT¥

2 i f B

(3 le|lnld]B

7 e n d f 1] e

0 9 18 27 35 0 9 18 27 35
word 1

C(SYMBUF ,SYMBUF +1)

i

clue. A typical clue is shown below:

SYMBUF [7 e In]d
SYMBUF+1 |Lf] 1 1 [e
0 9 18 27 35

FUNCTION: 1, Search the table for a key that matches the
: clue _

2, If there is no match, set false
Otherwise, set true, and C(MRKER) 0-17 =
location immediately following the matching
key; i.e., word 3 of the entry satisfying
the test.
EXAMPLE :

In this example, if the search is successful, the interpreter
will load words 3 and 4 of the entry satisfying the test.

cnts()

tsrch()

jmp(absent, f)

xntv(mrker)

load(1) '""load word 4"
xntv(mrker)

10ad(0) " load word 3"

N

-~ MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ.7.02 PAGE 110

POP: SRCHK Search keys
FORMAT: srchk(Y)

Y is the location of a 6-word search file

Search File

Y 0 (roll 0) search option
Y+1 step size 0
Y+2 ignore
Y+3 ignore
Y+l mask
Y+5 -n octal 12
0 8 35

C(Y+5) 0-17 -~ Offset relative to 1ink word in any link on |

roll 0, This is the offset of a selected word
~ in the step region, Therefore, n must be < step
size,

C(Y4+4) -- 36-bit mask. The 17°s in this mask define bits to be
tested in the selected word. These bits are called
the keys.

C(Y) 18-35 -- 0 if a test is to be made for all keys off

1 if a test is to be made for any keys on

FUNCTION: 1. Test keys in each link on roll 0, according to the

search option, until successful or until there are

no more links.

2. If successful, set true; and make ROLPTR+0 point
to the VSW of the link satisfying the test.

‘1f unsuccessful, set false; and set C(ROLPTR+0) = O.

MULTICS SYSTEM-PROGRAMMERS © MANUAL

SECTION BZ.7.02

PAGE 111

EXAMPLE :
srchk(alpha)
: Typical Link
ALPHA 000000 00001 000007] 00000(
ALPHA+1 OODQOS 000NN step word =5
ALPHA+2 ignored step word -4
ALPHA+3 | ___ignored = | EZ=
ALPHA+4 (777000 000777 step word -2
ALPHA+S |777775] 00001 -
0 8 25 1 o)
2]lalb | cl

0O 9 18 27 35

NOTE: 777775 is =3

Here, the interpreter tests each link for any 1 bits
in the shaded areas in step word -3.

COMMENT: The interpreter performs the search as follows:
It first searches thread 31, then thread 30,
then thread 29, etc. However, it performs a
forward search on each thread.

POP: SRCHKC Search keys continued

FORMAT: srchkc(Y)

Y is the location of the 6-word search file used
by the last executed SRCHK or SRCHKC pop. (See
SRCHK for format.) |

FUNCTION: 1,

2.

Determine whether the last executed SRCHK
or SRCHKC pop was successful

If the pop was not successful, then set
false and set C(ROLPTR+0) = O,

If the pop was successful, execute SRCHK
pop with the Fol]owing modification:
RP(ROLPTR4+0) is pointing to the VSW of

the 1ink satisfying the test, If this

link is the last on thread N, then start
search at the first link of thread N-1,

If this 1ink is not the last 1link on thread
N, then start search at the next 1link of
thread N.

ﬂ

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 112

S. SHIFT POPS
Pops

POP . WRKL Shift work left
FORMAT: wrki1(Y)

FUNCTION: Shift work left by C(Y) 0-17 bit positions. Fill
with zeros on the right of WO,

EXAMPLES ¢
wrkl (C3)
C3 @E@EZI@OOOO
0 18 5
Case 1 Case 2
WO before |007777 1 000000 WO before [777777 0000003]
0 8 5 0 18 5
WO after [077770 000000 W0 after (777770 I1OOOOOO§5
0 18 5 0 8

COMMENT: WRKL is equivalent to multiplication by a power of 2.

POP: WRKR Shift work right
FORMAT: wrkr(Y)
FUNCTION: Shift work right by C(Y) 0-17 bit positions. Fill with
zeros on the left of WO,
EXAMPLES :
wrkr (C3)

c3 [[000003] 000000 |
0 18 5

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 113“

Case 1 Case 2
w0 Before[007777 | 000000 | WO Before | 777777;[000000[
0 18 35 0 18 35
WO After | 000777 | 700000 | wo After | 077777 | 700000 |
0 18 35 0 18 35

COMMENT: WRKR is a logical shift, not an arithmetic shift,
It should not be used to divide a negative number by a

power of 2,

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02

T. EXCHANGE POPS

Pops

POP: XCH Exchange work and storage
FORMAT: xch(Y)

FUNCTION: Exchange C(wW0) and C(Y)

EXAMPLE ;
xch(w1)
Before After
wo | 000003 | 000000 | wo [000005 | 000000 |
0 18 35 0 18 35
w1 | 000005 | 000000 | w1 | 000003 | 000000 |
0 18 35 0 18 35

POP: XLR Exchange left and right halves of work
FORMAT: x1r()
FUNCTION: Exchange C(WO) 0-17 and C(WO) 18-35

POP: XLRS Exchange left and right halves of storage
FORMAT: x1rs(Y)
FUNCTION: Exchange C(Y) 0-17 and C(Y) 18-35

EXAMPLE :
x1rs(alpha)
ALPHA before | 000005 [000000 |
0 18 35
ALPHA after | 000000 [000005 |
0 18 35

COMMENT: x1r() 1is equivalent to xl1rs(wO)

PAGE 114

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7,02

U. DUMMY POPS
Pops
POP: DMY Load Dummy
FORMAT: dmy(Y)
FUNCTION: 1, Add 1 to dummy counter

2. Set C(DO) 0-17 =Y

Set C(DO) 18-35 = O

EXAMPLE :
dmy (7) appends the following word to the dummy stack:

| 000007 | 000000 |
0 18 35

POP: PRD Prune Dummy

FORMAT: prd(Y)

FUNCTION: Subtract C(Y) 0-17 from dummy counter;
i.e., prune dummy stack by C(Y) 0-17 words

PAGE

115

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7.02 PAGE 116

V., USER POPS

There are five user pops, Each corresponds to a GE-645 machine
language subroutine in the procedure segment., The starting
locations of these subroutines are stored in the upper halves

of locations 3-7 in the procedure segment, For example:

, Loc., of subroutine Ignored
3 for useri
0 18 35

tach of these starting locations is somewhere after the reserved
locations (octal 0-12),.

In writing the subroutines constituting the user pops, the user
must observe the following conventions:

1. The base pairs are all reserved:

Used by Pops Interpreter Used by Multics
AP -~ Procedure segment SP - Stack segment
BP - Data segment LP - Linkage segment

2. The following registers are reserved:

X1 - Pop counter =~ Relative to AP
X3 - Work
X4 - Exit - Relative to BP
X5 - Dummy

3. The other registers may be changed,
L4, The user routines return to the interpreter in the

manner described for DOML (see DOML).

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 117 =

Pops
POP: USER1, USER2, USER3, USERL, and USER5

FORMAT: wuserN(Y)

N=1,2,3,4, or 5
Y is a location in the data segment

FUNCTION: Execute the corresponding user routine
EXAMPLE :

user3(w2)

Assume user3 is a store lower pop: The operand is Y, a
location in the data segment,

The routine sets C(Y) 18-35 = C(WO) 18-35,

wo | 001750 | 000625 |
0 18 35

W2 before|_ 000764 | 000235]
0 18 35

w2 after [_000764 | 000625 |
0 18 35

COMMENTS: 1. True/false tags and address modification pops
may be used with the user pops; i.e., the pop
userb(w2,f) is permitted.

2. The user pops are similar to DOML; however,
they are more versatile, since the operand of
a user pop may specify data. The operand of
the DOML pop simply specifies the location
of the machine language subroutine, (See DOML.)

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 118

W. TIMING POPS
Pops
POP: TYMF Time from

FORMAT: tymf(N)
N is normally roll 3 (fact roll)

FUNCTION: Record time by setting TYMER and TYMER+1. These are
contiguous one-word registers in the data segment,
with the following formats:

TYMER Location of current 0
(even address)|TYMF
Current time (in 6lths of a
TYMER+1 millisecond)

0 18 35

POP: TYMT Time to

FORMAT: tymt(N)
N is normally roll 3

FUNCTION: 1, Compute elapsed time between last time recorded
(TYMF) and current time (TYMT)

2, Bump bottom of roll N by two words, and put the
following information in these words:

word 1 | time difference - recorded in
64ths of a millisecond
word 2 | location of last location of
TYMF pop current TYMT pop
0 18

Time difference = current time - C(TYMER+1) - C(TYMASK)

TYMASK is a 36-bit cell in the data segment, with the
following format:

k bits 36-k bits
[1| Fudge factor]
0 k 35

The k-bit field may be used to set a flag in word 1,
indicating that timing information follows, If the
k-bit Fie?d contains 1, then the first k-bits of

word 1 are set to 1°s, The user should choose k small
enough, so that 36-k bits are sufficient for recording
the time difference. If k=0, then there will be no
flag in word 1,

MULTICS SYSTEM-PROGRAMMERS“® MANUAL SECTION BZ.7.02 PAGE

The fudge factor is set equal to the time spent
in executing the TYMF and TYMT pops, so that this
may be omitted from a critical time calculation,
This time may be determined by executing a pair
of successive TYMF and TYMT pops and using the
elapsed time, The current estimate is

25 (milliseconds/6u4).

General Comments

1. Any number of pops may appear between a TYMF pop and
a TYMT pop.

2, If there are several TYMF pops, each TYMF overrides
the preceding TYMF,

CAUTION: The current implementation of the interpreter does
not include a Multics timer interface, Therefore,
until further notice, all times will be 0, The
timer feature was originally provided for a GECOS
environment, where the timings would be more
meaningful than in a Multics environment,

119

\

MULTICS SYSTEM=-PROGRAMMERS “ MANUAL SECTION BZ.7.02 PAGE 120

X. ERROR POPS

Each of the error pops bumps the bottom of roll 1 (error roll)
by one word and sets C(word 1) as follows:

Card Column P
Number Number i Y
0 8 9 15 19 35
Card number -- C(CRDNUM) 18-26,
Column number -- The number of the column in which the error

occurred, This is either C(WO) 0-17 or
C(CHARC) 0-17, depending on the pop. The
first 9 bits in this number must be zero,

Pip -- A character printed as part of the error list (see Printing
the Error List, paragraph Y.1,c), If C(word 1) 18 = O,
the pip is a ©~., This appears under the erroneous
character, If C(word 1) 18 = 1, the pop is a *, This
appears under a character after the erroneous character,

Y -- The operand of the pop. This is the location of the first
word of the error message. This location must be in the
lower half of the data segment; i.e,, Y must be < 2¥%%17
The error message is a type-1 string

EXAMPLE ;
Y 17 I L L
Y+1 E G A L
Y+2 B C H JA
Y+3 R A C T
Y44 E [R B
0 9 18 27 35
Pops

POP: EROR Error on work

FORMAT: eror(Y) .
Y is the location of the error message. (See description
above),

FUNCTION: 1. Bump bottom of roll 1 by one word
2. Set C(word 1) as follows:

C(word 1) 0-8 = C(CRDNUM) 18-26

C(word 1) 9-17 = C(W0O) 9-17, (Here, C(WO) 0-8 must
be zero,)

C(word 1) 18 = O

C(word 1) 19-35 =Y

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BZ,7.02

POP: ERRP Error on work, and prune

FORMAT: errp(Y)
Y is the location of the error message,
(See description above,)

FUNCTION: 1, Execute eror(Y)

2. Prune WO

POP: ERRCC Error on current column
FORMAT: errcc(Y)
Y is the location of the error message.
(See description above,)
FUNCTION: 1, Bump bottom of roll 1 by one word
2, Set C(word 1) as follows:

C(word 1) 0-8 = C(CRDNUM) 18-26

PAGE 121
ﬂ

C(word 1) 9-17 = C(CHARC) 9-17. (Here, C(CHARC)
0-8 must be zero.)=

C(word 1) 18 =0
C(word 1) 19-35 = Y

COMMENT: errcc(Y) is equivalent to load(charc)
errp(Y)

POP: ERRLC Error on last column

FORMAT: erric(Y)
Y is the location of the error message.
(See description above.)

FUNCTION: 1, Bump bottom of roll 1 by one word

2. Set C(word 1) as foilows:

C(word 1) 0-8 = C(CRDNUM) 18-26

C(word 1) 9-17 = C(CHARC) 9-17. (Here, C(CHARC)
0-8 must be zero.)

C(word 1) 18 = 1
C(word 1) 19-35 =Y

)

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7.02 PAGE 122

Y., OUTPUT POPS

1. Print Pops
The print pops (PRNT and PRNTC) prepare data for printing.
They specify the format of the data and the order in which it
is to be printed.
Each print 1ine may contain up to 132 ASCII characters,
The characters constituting the print line are first placed in
PLINE, a 37-word buffer in the data segment., PLINE has the
following format: |

PLINE+O -~ Print positions 1-4

PLINE+1 -- Print positions 5-8
PLINE+2 =-- Print positions 9-12

PLINE+32 -- Print positions 129-132

PLINE+33

PLINE+3L Extra words, which may be needed for control
PLINE+35 characters,

PLINE+36

(The locations PLINE-3, PLINE-2, and PLINE-1 provide a backstop
in case any integer extends to the left of print position 1.)
When a line is terminated, the interpreter moves the line to
the list segment or the error segment,

a, JThe Parameter File

The oberand of a print pop is the location of the parameter
file in the data segment.,* Six types of words may be used in

this file:

* This is true if Y # 0., (See Printing the Error List,
paragraph Y.1.c.)

\
\
X
\

MUﬂJICS SYSTEM~-PROGRAMMERS “ MANUAL SECTION BZ.7.02 PAGE 127‘\
§

"ATH - ASCII to ASCII conversion
HTH - Hollerith to ASCII conversion

FID, LID, RID, FI10, LIO, and RIO - Numeric to .
ASCII conversion

Skﬁp - Skip a certain number of words in the parameter
file

Leave - Go to the next pop, without terminating the
print line

PRT - Terminate the print line, and go to the next pop,
Each file word consists of five fields:

Field 1 (bits 0-2) - Code - This field identifies the type
of file word, as follows:

0 - SKIP

1 - ATH

3 - HTH N
4 - FID, LID, RID, FIO, LIO, and RIO

5 - PRT

2,6, and 7 - not used

The code field is not applicable to the leave file word.,

Field 2 (bits 3-7) - Word Count (W) - This field tells the
number of words to be moved to PLINE (ATH, HTH) or the
type of integer conversion (FID, LID, RID, FIO, LIO, RIO).
Otherwise, it is ignored,

Field 3 (bits 8-14) - Print Position (P) - The meaning of this
field depends on the type of file word,

Field 4 (bits 15-17) and Field 5 (bits 18-35) - Index (I) and
Address (A) - These fields give an effective address,
which is computed as follows:

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 124

Index Effective Address

I1=20 A Each index corresponds to

I =1 A+C(X1) a GE-645 index register,

I1 =2 A+C(X2) Therefore, this feature

I =3 A+C(X3) can be used only by the
interpreter,

I =14 A+C(OUTAGYH) 0-17

1 =5 A+C(OUTAGS) 0-17 OUTAGY4, OUTAGS, and OUTAGG6

I =6 A+C(OUTAGE) 0-17 are cells in the data
segment,

1 =17 (See LEAVE, page 126)

The meaning of the effective address depends on the type
of file word,

b, Description of File Words
1, ATH - ASCII to ASCII

FORMAT: ath(A,I,P,W)
REPRESENTATION IN DATA SEGMENT:

L1 TwTl P [1] A |
0 3 8 15 18 35
MEANING OF OPERANDS:
A and I -- Effective address is location of first word
in string

P -- Print position for first ASCII character (1-127)
ASCII characters are moved into PLINE left to right

W -- Word count, If W = 0, a type-1 string is to be
moved to PLINE
Ifw=1,2,,.., or 31, LW characters
are to be moved to PLINE ’

NOTE: The first character in a type-1
string tells how many charact-
ers are to be moved to PLINE,

but this character itself is
never moved,

2, HTH - Hollerith to ASCII
FORMAT: hth(A,I,P,W)
REPRESENTATION IN DATA SEGMENT:

L 3] w P
0 3 8

35

Ut bt
N —
[00]

MULTI

CS SYSTEM-PROGRAMMERS “ MANUAL SECTION BZ.7.02 PAGE 1254‘

MEANING OF OPERANDS:
A, I, and P -- Same as for ATH

| The ASCII equivalents of the Hollerith characters
are moved into PLINE left to right.

W -- Word count, If W =0, a type-1 Hollerith
string is to be moved to PLINE

Ifw=1,2,..., or 31, 6W
characters are to be moved to
PLINE.

COMMENT: The difference between an ASCII type-1 string
and a Hollerith type-1 string is illustrated

below: :
ASCII 3 A B C Hollerith 5 A B C D E
003 101 102 103 05 21 22 23 24 25
3, Integer to ASCII (macros shown below)
FORMAT: macro(A,I,P))
REPRESENTATION IN DATA SEGMENT:
[4 wr] P [I] A |
03 8 15 18 35
*The macro determines W, (See MEANING OF OPERANDS.)
MEANING OF OPERANDS:
A and I -- Effective address is location of integer
P - Print position for least significant digit
(1-127) Numeric data is moved into PLINE right
to left,
W -- Conversion type - The value of W for each of
the macros is shown in the chart below:

Macro Meaning Value of W Number of characters
FID Full integer decimal 0 Number of significant
LID Left integer decimal 1 digits (Plus one, if
RID Right integer decimal 2 the sign is negative)
FI0 Full integer octal 8 12 -~
LIO Left integer octal 9 6
RIO Right integer octal 10 6

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ,7.02 PAGE 126
EXAMPLE

CaLPHA) = | 777777 | ooo001 |
0 18 35

Print Positions

-262143 fid(alpha,0,20)
=N lid(alpha, 0,20)
1 rid(alpha,0,20)
777777000001 fio(alpha,0,20)
777777 lio(alpha,0,20)
000001 rio(alpha,0,20)

9 20

COMMENTS: 1. For negative decimal numbers, the leftmost
character is the sign. Otherwise, the leftmost
character is the most significant digit,

2, Leading zeros are printed with octal numbers,
No leading zeros are printed with decimal numbers,

3, Zero is represented as shown below:
FID, LID, RID 0

LIO, RIO 000000
FI0 000000000000

4) LEAVE - Leave
FORMAT: leave()
REPRESENTATION IN DATA SEGMENT

| 77777 1 717777771
0 15 18 35

The macro determines the entire word

The 7 in bits 15-17 indicates that the file word is

LEAVE
A1l other bits are ignored

5) SKIP - Skip
FORMAT: skip(A,I) or skip(A)
REPRESENTATION IN DATA SEGMENT:

Lol o] o I | A I
0 3 8 5718 35

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BZ.7.02 PAGE 127Aa‘

MEANING OF OPERANDS:

A and I -- Effective address is location of
next parameter word relative to
current parameter word,

COMMENT :

The user may specify a backward skip, but may
not specify a skip of 0O words:

skip(0) is illegal (terminates line, with
error message)

skip(1) goes to next word, as usual

skip(2) skips one word

skip(~3) goes back three words

6) PRT - Print
FORMAT: prt(P,1,A)
REPRESENTATION IN DATA SEGMENT:

[sT o] P [1] A | :
0 3 8 15 18 35 <

MEANING OF OPERANDS:

A and 1 -- An effective address of 1-15 decimal
specifies the number of lines to space
after printing: 1 means single space,
2 means double space, etc,

An effective address of 20 decimal
specifies that a new page should begin
after the line is printed,

P -~ The report code:

2, if the line should be included in the list
segment

Any other number, if the line should be included
in the error segment

-~ MULTICS SYSTEM-PROGRAMMERS* MANUAL SECTION BZ,7,02 PAGE 128

Pops

POP: PRNT Print

FORMAT: prnt(Y)
If Y #0, it is the first word of the parameter file
(See Printing the Error List, paragraph Y.I.c, for a
description of what happens when Y = 0.)

FUNCTION: 1, Clear PLINE -- PLINE+36 to ASCII blanks

2. Proceed as directed by parameter file

EXAMPLE :
~rocedure Segment Data_Segment
prnt(list) list: hth (string1,0,1,2)
ath (string2,0,20,0)
fio(number,0,60)
prt(1,0,3)
STRING' [HOL JTLERI[ITH [BBB® |
’ STRING2 |5 A [Ss € J1 1 B B |
NUMBER [000007 | 000000 |
0 18 35
PLINE | HOLLERITH ASCI1I 000007000000}
1 20 60 Print
Position
COMMENTS: 1, The interpreter will truncate an ASCII or Hollerith
string on the right, if necessary, so that it will
not exceed to the right of print position 132,
2, Data may be placed in PLINE in any order; e.g.,
positions 22-35 may be filled before positions
3-10, Data may also be superimposed on other data
3, CAUTION: Always use a PRNT or PRNTC pop to place
| data in PLINE -- do not move any strings directly
into the buffer,
POP: PRNTC Print continue
FORMAT: prntc(Y)
~ FUNCTION: Proceed as directed by parameter file

NOTE: This pop does not clear PLINE buffer
COMMENTS: See PRNT

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 129 »~

c., Printing the Error List

POP: PRNT Print
FORMAT: prnt(0)
FUNCTION: Case 1: Input Stream on Cards -- Roll 1 (error roll)
empty
Go to next pop
Case 2: Input Stream on Cards -- Roll 1 non-empty
1. Scan each word on error roll, and print
each error message
2, Prune error roll
Case 3: Input Stream on Roll N -- Roll 1 empty
Set C(BOTTOM+N) 0-17 = RP(ROLPTR+N)
Case L: Input Stream on Roll N -- Roll 1 non-empty
1. Sort error roll in ascending order -
2, Place the following information in the
error segment: each message on
the error roll, with the corresponding
FORTRAN statement (including pips).
(See Error Pops, Paragraph X.)
(The input stream must be a type-3 string).
3, Prune error roll
L, Set C(BOTTOM+N) 0-17 = RP(ROLPTR4+N)
EXAMPLE
The following messages are part of a FORTRAN error list:
38 IF(L(J)-MC(K)) 299,50,299
w k% OPEZRAND IN WRONG MODE,
67 999 FORMAT (15H1 #*%*SUB-LATINS)

* % % MULTIPLY DEFINED EFN.

~ ~ MULTICS SYSTEM-PROGRAMMERS * MANUA L SECTION BZ.7.,02 PAGE 130
| 2. WBIN Pop

WBIN uses information on the binary and relbit rolls to produce
text, linkage, and symbol segments,

a, Binary Roll Format

Each group on the binary roll defines a section of consecutive
words in the text, linkage, or symbol segment., The binary roll

contains variable-size groups with the following format:

VSwW
VSW+ 1
K words
0 35

C(VSW) 0-17 - Size of group
C(VSw) 18-35 - 0 if not labeled COMMON
~ Otherwise, offset of word on SYMREF roll
, Note: This field is used only by FORTRAN IV, not
by the interpreter,
C(VSW+1) 0-7 - Number of words in section (k)
k =0,1,2,...,0r 255
C(VSW+1) 8-11 - Segment type (in octal)

0-7 -- Illegal (does not apply here)

10 -- Object procedure (text segment)

11 -- Absolute (does not apply here)

12 -- Linkage (linkage segment)

13 -- Blank COMMON (does not apply here)

14 -~ Stack (does not apply here)

15 -~ Definitions section (in text or linkage
segment)

16 =-- Symbol segment

17 =-- Illegal (does not aoply here)

Note: Groups with types labeled '"does not apply
here'' are ignored by the interpreter,

C(VSW+1) 12-17 - Ignored by the interpreter
~ C(VSW+1) 18-35 - Loading origin

k words -- Section of code to be moved to specified segment

MULTICS SYSTEM~PROGRAMMERS® MANUAL SECTION BZ.7.02 PAGE 131 -

b. Setup of Text and Linkage Seaments

The interpreter uses the following data segmert registers to

determine the setup of the text and linkage segments:

TXTL ## of words in Ignored
text for obj, proc,
0 18 35
LNKL # of words in Ignored
linkage for obj.proc
0 18 35

0 - Def., section
follows text in .
PUTDEF text segment Ignored
non-0 - Def, sec,
follows linkage

in linkage segment

0 18 35
DFSL j# of words in Ignored

definitions sect,

0 18 35

c, Loading Origin

The loading origin is an offset in the text, linkage, or
symbol segment, It tells the interpreter where to begin
loading the k-word section, For the definitions section,
the loading origin is relative to the location of the first
definition word, Otherwise, it is relative to the first
word of the segment,

d, Relbit Roll Format

As each new group is being formed on the binary roll,
relocation codes (if any) for that grbup are stored on the
relbit roll, A 6-bit relocation code is stored for each
half-word in the k-word section, These codes are stored
contiguously, starting at the leftmosf position in the relbit

roll, Figure 4 shows the setup of the relbit roll,

ﬁ

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 132

1U 1L
2U 2L k-word section
3U 3L U = Upper
L = Lower
0 18 35
Relbit Rol1l
Top W 1Lj2U 2L 13U 3L
LuluL fs5ulsLleu] el (k+2)/3 words (ignoring remainder)

Bottom 0 6 12 18 24 30 35

Figure L4, Setup of Relocation Information for k-word
Section

The relocation codes have the following meanings:

00 -- Multics code 0 (later squeezed to 1 bit)
01-17 -- Not used
20-37 -- Standard Multics codes (later squeezed to 5 bits)
LQO-77 -- Not used

e, Collection of Relbits

The interpreter uses the text and linkage segments to collect
relbits, After all relbits have been collected, the interpreter
squeezes the 6-bit relocation codes into 1-bit and 5-bit Multics

relocation codes, and places this information into the symbol

segment:
Before After
000000 0 1-bit string
01xxxx Ixxxx 5-bit string

NOTE: These strings are concatenated; thus, 5-bit codes may

overlap words,

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION EZ.7.02 PAGE 133 N

After all relbit: have been moved to the symbol segment,

the

interpreter moves text to the text segment, linkage

to the linkage segment, and symbols to the symyol segment,

The

relbits are collected in the text and linkage segments

as follows: There are four classes of relbits: text, linkage,

definitions, and symbol, The text and linkage segments are each

The
the
the

and

. '~d into sectors, Each sector is appfoximately 2**18/3 words,
second sector of the text segment contains text relbits,

third sector cf the text segment contains definitions relbits,
second sector of the linkage segment contains linkage relbits,

the third sector of the linkage segment contains symbol

relbits., The first sector in each segment is not used in the

collection of relbits, Since Multics preclears each unused page

on first reference, the interpreter does not praclear the sectors

before collecting relbits,

The

sectors containing relbits have the following setup: The

first four words of each sector are used by the interpreter to

store pointers, The remaining words in the sector contain

relocation codes in the same format as they would appear on

the

relbit roll, %

%

N

MULTICS SYSTEM-PROGRAMMERS® MANUAL

EXAMPLE ;
™TL |7 1 0]
Ultimate ou oL
Contents 11U 1L
of 2l 2V 2L
Text 3 32U 3L
Segment i Ly [
55U 5L
q_6U 6L
0
Text 1l Used by
Sector 2 Interpreter
3
i OUIOLTTUIIL]2U]2
5. 3U13L i uUfLLI5UlS
U] 6L

0 6 12 18 24 30 35

f. Symbol Segment

SECTION BZ.7.02 PAGE 134

The first portion of the symbol segment contains symbols which

are moved from the binary roll, Following this are three

sections of relbits for the text, linkage, and symbol

segments, respectively,

The interpreter uses the contents of the SYML register in the

data segment to determine the setup of the symbol segment:

SYML | # of words in
symbol segment
(excluding relbits)

Ignored

0 18

35

Relbits for the definitions section are concatenated with

those for the text segment or for the linkage segment,

depending on the value of PUTDEF,

MULTICS SYSTEM-PROGRAMMERS” MANUAL =~ SECTION 8Z,7.02 PAGE 135 N

Relbits for the tymbol segment pertain only tc the symbol words

stored in the first portion,

The setup of the symbol segment is shown below:

{ symbol words

Relbits for text
(possibly incl,
definitions)
Relbits for
linkage (poss.
incl, def,)
Relbits for
symbols

0 35

The following illiustrates the format of a typical relbits section:

#_of relbits in area below
packed relbits

g. Definitions Section

The definitions section should begin wifh the following words:

Group A O 5 0 Left half is offset of next group in definitions section
T 2 T = offset of text relbit sect. in symbol seg.,2=symbol seg.

- t e x |/ Symbolic name for text relbits; identifies word above

Group B 5 10 Q Left half is offset of next group in definitions section
L 2 L = offset of linkage relbit section in symbol seg. ,
gl + lel 1 ‘1 2 = cymbol seg.
- é il n J/Symbolic name for link relbits; identifies word above
041 0
Group C 10 15 0 Left half is offset of next group in definitions section
S 2 S = offset of symbol relbit sect. in symbol seg., 2 = symbol

10 r e 1 \
(

)

0 9 18 26 35

Symbolic name for symbol relbits; identifies word above

1
72
=

ﬂ

seg.

ﬂ

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 136

The second word in each group is set by the interpreter. A11

other words are set by the user,

The offsets of these three groups in the definitions section are

contained in three data segment registers set by the user:

RELTX [Offset of Group A ignored]
0 18 35
nftlK [Offset of Group B ignored]
0 18 35
RELSY [Offset of Group C ignored]
0 8 35

If the definitions section is set up as described above,
C(RELTX) 0-17 = 0, C(RELLK) 0-17 = 5, and C(RELSY) C-17 = 10,
This feature allows the user to place these groups anywhere

in the definitions section.

Pop
POP: WBIN Write Binary
FORMAT: wbin(0)

wg;n(N) where N is the number of the binary roll
FUNCTION: Case 1: The operand is O

This pop determines the numbers of the binary and
relbit rolls from two data segment registers:

(Even location)

BINREL [of binary roll Tgnored]

0 8 35

BINREL+1 §{f of relbit roll Ignored ‘fé
0 8

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION 37.7.02 PAGE 137

1. If relbit roll is empty, go to next pcp.

Otherwise, move 6-bit characters from relbit roll
to proper sector in text or linkage segment.

2. Prune relbit roll

Case 2: The operand is N

1. If C(LNKLY 0-17 = 0, then set C(LNKL) 0-17 = 8, and
create dummy 8-word linkage header:

&} (o] (o] (@] o) {e)] (o] (o]
0¢ (00] (@] (@] (en] (en] (an] (an]

NN EWN =2

0 18 35
2. Squeeze relbits and move them to the symbol segment

3, Set the three relbit pointers in the definitions
section.

L4, Scan the binary roll and move the text, linkage, and
symbol words to the proper segments,

COMMENTS: 1. The wbin(0) pop should be executed as each group
is put on the binary roll (if the group contains
relocatable information),

2. The wbin(N) pop should be executed only after
the last group has been put on the binary roll,

3, If the operand of the WBIN pop is N, N overrides
C(BINREL) 0-17

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ.7.02 PAGE 138

Z. EXECUTIVE AND TERMINATION POPS

1. Snap Pops

There are two snap pops:
SNAPC =-- Snap core
SNAP =-- Snap panel, stacks, and rolls
The format of each of these pops is pop(Y), where Y is the

location of a file in the data segment.

A11 snap output appears in the error segment.

a. Core Dumps
1) File Format

Each word of the file for a SNAPC pop has the following

format .

Lorigin N B
0 18 35

1f origin # 777777, the file word directs the interpreter
to snap N words in the data segment, starting at origin.

The file may contain any number of words of this type.

EXAMPLE :
[[010000_] 0006100)
0 18 35

This word causes the interpreter to snap data segment

locations 10000 -- 10077.

If origin = 777777, the file word signifies the end of the

file. Every file must include a word of this type,.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION B3Z2.7.02 ~ PAGE 139

A typical file ic<:

2)

[010000_]_000100
034000_]_000040
777777 _]_000000

0 18 35

Snap Format

SNAPC produces the following output:

1 L3

The first line is:
SNAP LOC nnnnnn
where nnnnnn is the octal location of the SNAPC pop in the

procedure segment,

. Following this message, all snaps requested in the file

appear in single-spaced format. Each line begins with the
octal address of the first word snapped in thie 1line. This
is followed by eight octal words, in each line except the
last. For example, 013100 indicates that the line snaps
data segment locations 013100 -- 013107. The last line
snaps one to eight words, depending on the number of words
remaining; i.e., N =81 + J (I lines of 8 words and 1 line

of J words).

A star appearing to the right of one of the octal addresses
indicates that one or more lines were deleted., A deletion
occurs whenever an 8-word pattern is repeated. Most

deletions occur because of a block of zeros.

‘\

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.0(12 PAGE 140

EXAMPLE :

000600
002020

Here, the lines starting with the following addresses were
deleted: 000610 -- 002010;

i.e., C(600)

. e . C(2010
c(601) (1%

. . . =C(20

o
nn

o
(@)
~
o)

C(607) = C(617) . . . =002017)

I

The last line of a snhap is never deleted.

b. Panel, Stack, and Roll Dumps

1) File Format

Each word of the file for a SNAP pop has the following format:

LM | N _|
0 18 35

The significance of these fields is summarized in the

following chart:

Sign-bit Sign-bit - Meaning After
of M of N Meaning in First Word First Word
0 0 Snap roll M, If N#£0, it is the | Same as in

| Tocation of a message to precede| first word
the snap; the message is a
type-1 string (generally the
name of the roll) in the data
segment,

0 1 N is a negative two’s complement| Same as in
number. Snap IN| rolls starting| first word
at roll M: 1i.e., snap rolis M
through M4|N| = 1

EXAMPLE: |000010 777774!
8

says snap rolls 10,11,
12, and 13 (octal).

_ (777774==4)
1 0 Snap stacks, End of file
1 1 Snap stacks and panel, Fnd of file

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION EZ.7.02 PAGE 141

If the sign bit of the first word = 1, then thz first word is
a special word; its interpretation is different from that of the
following words in the file. There are three jossible types

of setups:

special word special word roll words
roll words end word end word
end word

The sign bit of the end word = 1. A typical file is:

777777 777777] Snap stacks and panel

000006 | 000000 Snap rcl1l 6 (no message)
777777 77777; End of file
0 18 5

2) Panel Snaps

A panel snap displays the following registers in the data
segment: SYMTLY, SYMCNT, SYMBUF-1, FEXIT, SYMKEY, CHAR, CHARC,
MODES, CONMOD, VARSIZ, MRKER, FCNT, DSCALE, BSCALE, DSIGN, BSIGN,
SYMBUF, CURPTR, RMD, MPAC, TLYIN, CONBUF, and ALTER, The

identification of the register appears above its contents.

3) Stack Snaps

A stack snap displays the currently used words in the work,
dummy, and exit stacks. A word in the left margin identifies
the stack: WORK, DMY, or EXIT. The format is similar to that
of a core snap. However, there is no suppression of Tines;
and the addresses are relative to the beginning of each stack.
The appearance of addresses anywhere within the range

777000 -- 777770 indicates that the stack was over-pruned.,

In this case, the snap displays the over-pruned area.

ﬂ

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE 142

EXAMPLE :

(-100) 777700
(- 70) 777710

. Indicates octal 100(i.e.,64) words
. over-pruned
777770

The stack snap is single spaced.

L) Roll Snaps

A ro.1 snap may be preceded by a message (see the chart on

page 140). The format of the snap depends on the characteristics

of the roll:

1. If the roll is empty or over-pruned, the following message
appears: n EMPTY, where n is the roll number in decimal,

There is nothing else in the snap.

2, If the roll is not open, the following message appears:
n NOT OPEN, where n is the roll number in decimal, There

is nothing else in the snap.

3, Otherwise, the snap displays the roll from the anchor

up to (but not including) the bottom,

The first two items on each line are: the roll number
(in decimal), and the location in octal of the first word
in the 1line relative to the anchor. These are followed
by eight octal words in each line except the last. If

the number of words from anchor to bottom is a multiple

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION Bz.7.02 PAGE 143

~of eight, then the last octal line contains simply the roll
number and the offset of the bottom from the anchor., Otherwise,
the last octal line also displays one to seven words, These

octal lines are double spaced.

The following subtitles appear below the octal words to which

they apply:
“ANCHOR
“TOP
“ANCHOR, TOP
One of the following subtitles appears below the empty space
corresponding to the bottom:
“BOTTOM
“TOP,BOTTOM
EXAMPLE :

003726000000
“BOTTOM

If the last 1ine of the roll dump contains no items of the
roll, then “BOTTOM or “TOP,BOTTOM appears below the first empty

space,

Suppression is possible., However, only the lines under which
no subtitles appear may be suppressed. The first and the last

lines are always printed.

The following information appears below the indication of the
bottom;:

n1 TO FLOOR VAR GRPSIZ(or n2 GRPSIZ) n3 GUESS nl4 ROLPTR

ﬂ

r

r

MULTICS SYSTEM-PROGRAMMERS ©~ MANUAL SECTION BZ,7.02 PAGE 1Ly

where: n1l number of words from bottom to floor

n2 = number of words in fixed-size groups
(VAR indicates variable-size groups)
n3 = number of words in the initial guess
nit = C(ROLPTR+N) 0-17, If no number appears here

then C(ROLPTR4+N) = O,

These are all decimal numbers.

For roll O only, the snap concludes with a table showing
the start of each of the 32 threads in the roll, the
number of links in each thread, and the number of references

made to each thread (by SRCH or SRCHP).

Pops
POP: SNAPC Snap core

FORMAT: snapc(Y)

Y is the location of the first word of a file
(See Paragraph Z.1.a.)

FUNCTION: Produce a snap, as directed by the file

POP: SNAP Snap panel, stacks and rolls
FORMAT: snap(Y)

Y is the location of the first word of a file
(See Paragraph Z.1.,b.)

FUNCTION: Produce a snap, as directed by the file

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION RZ,7.02 PAGE 145 N

2. Termination Pops

Pops
POP: BORT Abort procedure
FORMAT: bort()

FUNCTION: 1, Snap data segment locations O to location preceding
top of roll O

2. Execute a snap(Y) pop, using C(ROLDMP) 0-17 as
the file location. ROLDMP 1s a register in the
data segment with the following format:

location of file ignored]
for snap(Y)
0 18 35

3. Terminate the procedure (See Chapter 1, Paragraph F)

POP: FIN Finish procedure N

FORMAT: fin()
FUNCTION: Terminate the procedure (See Chapter 1, Paragraph F.)

Appendix A

Summary of Commonly
Used Areas in the Data Segment

TUNNTW . SHIWWTUO0¥d=WILSAS SOILINW

Data ’)lustration Set By ‘\ Used By Cleared By)»
Area - ’ ‘
Anchor ANCHOR+N Jlnitializatjon routine - Pg'pﬁ tgfgarfselfgrf rt':guf?r]% Lower h‘?lf,de?red
table ' 11- expansion routine OPN, REL, REMOV, RSV by 1r.1it1a11zat10n i
| ocation of anchor 0 nd pops that put infor- RSVM, RWND, SNAP routine
for roll N tion on the bottom
0 18 35 of a roll
Initialization routine 'Pops that refer to rollrbo half cl d
Bot tom BOTTOM+N Roll expansion routine ' Holl expansion routine bwe;" i:i 1: eari:e
Table | [o—{Torof Totl - cPYP, CPYR, GOBP, OPN, vCNT CNTG, GPY, CPYP, | -Y imitialization
f°°a Lon o bottom 0 PBCT, PBCTP, PLG, CPYR CPYX, CPYXP, routine
Lot roll = 3 PRNT{0), PRJ, PTCT, |DLOAD, DNG, DNX, ERB, |
B PTCTP, PTP PTPP REL ;GOB GOBP, INSB, OPN,
REMOV, RSV PSVM RWND PBCT, PBCTP, PI]:_S PLG
'PLXG PRES, PSAV, RSV
'RSWM, SCNT, SNAP SMEB
'SORTR ULOAD UNG, UNX
BSCALE aftefigary scale CONBA 'FXDD, FXDS, SNAP CONR, CONAR, RNUM
r Set to 0 and ignored b
0 - 8 35 o
User (upper) ~ (FXDD, FXDS, SNAP CONR, CONAR, RNUM
BSIGN ! |Sign of bin. scale | 0-no bin. scale it CONBA(1ower) :
0=+, non-zéro = - 1=bin, scaje # ’
ﬁgo‘ 18- - 35 !
CHAR | K ASCI 1 or K Character input subrt. 'Character input subrt.
L Leys spec, char eys SWIP, SWAP - i CONBA, CONDA, RCH, RCHA,
. 0 9 18 35 'RCKY, RCKYA, SCH, SCHA,
; — . SCKY, SCKYA, SNAP
CHARC ' [Col. # of current 0 Character input subrt, 'Character mput subrt,
© |lioput character SWIP, SWAP. .ERRCC, ERRLC, SNAP
0 18 35
CONBUF! Principal part (ignoring the decimal GON, CONA, CONAR, CONR, FLTD, FLTS, FXDS, FXDD,| CONR, CONAR, RNUM
&CONBUF+1! point) changed to binary. A two-word| !FIXD, FIXS SNAP
| er
- | 0 18 35 |
CONMOD | [0 = dec, 1 =oct, | lgnored] 1 mMODD,MODO - CON,CONA,CONAR,CONBA,
0 18 35 - CONDA,CONR,SNAP

i

20°L° 79 NOILD3S

1=V

)

Data 11lustration Set By Used By Cleared By
__Area
CRDNUM | | 0 { n l o | Character input subrt. | Character input éuéri.,,
10 18 a7 35 SWAP, SWIP EROR, ERRGC, ERM.C, ERRP,
where n = # of last group processed PRNT
in current type-3 string
CRONUMHT | [0 | n 1l o] | Character lnput subrt. | Character input subrt.
0 18 27 35 SWAP, SWIP EROR, ERRCC, ERR.C, ERRP,
where n = number of groups in current PRUT
type-3 string
QRPTR| [P (offset rela-[ignored | N LINKP, SRCH, SRCHP SNAP
tive to top of Ny '
0 18 3035
DFSL # of words in | 4 User WBIN
definitions gectn. gnore
O 18 ‘Cé’_S_j.‘.
DMYSIZ| Bize of dummy | 0] User Initialization routine
. 18 35
, e=decimal
DSCALE|| # following e lSet to 0 and |~ | CONDA FLTD, FLTS, FXDD, FXDS, [CONR, CONAR, RNUM
Pos, or neg, # | _ignored N SNAP
0 18 35
DSIGN | {Sign of dec. scale Set to 0 and ' User - FLTD, FLTS, FXDD, FXDS, |{CONR, CONAR, RNUM
=+, nonzerg = = ignored SNAP !
! 0 18 35 !
el — PSR —
FCNT | # of digits to i Set to 0 and | User FLTD, FLTS, FXDD FXDS, "CONR, CONAR, RNUM
i ht of dec, pt.'' ~ ignored | SNAP !
-0 A b= 35 ‘,
FEXIT . Bpecifies Toc. for 0 FEX RCH, RCHA, RCKY, RCKYA, |
| igyntax fail routine ARSKY, RSKYA, RSY, RSYA
0 _18 35 |
FUNBUF FUNBUF+n where n = offset of word Interpreter User
in EUNBUF
[Character positions 1]
-0 .35 I —
) - ' |
J |

20°£°Z9 NOILDO3S TTVNNWW ., SHIWWTHI0Ud=WILSAS SOILINW

=V

Y

/

Y

]

)

TVONYW . SYIWWVHO0UdSWILSAS SITLTINW

input stream tatus

0 ' 18 35

SWAP, SWIP

Data_ I1lustration Set By Used By Cleared By
_Area] | Floorm | |
Floor | | Lotation of floor 0 See Anchor Table See Anchor Table See Anchor Table
Table | |_for roll N
0 18 35
FROM Starting location ignored MOVF MOVT
for data movement :
0 , 18 35
FTAB | [Table location 0 User TSRCH
FTAB+1 0 f ta ries |
0 18 35
GRPSI1Z GRPS| Z+N User _ .. CPYG, DNG, ERB, INSB,
l A T T od 1 PLG, SMEB JSNAP, SRQH
—le SRO'P, UNG, ZBG
18 .35
GﬁO = Roll N contains G-word groups
G=0 - Roll N contalns var. sxze groups
GUESS QUESSHN User Initialization routine
[CSpecifies space alloc, for Toll N | SNAP
0 35
LAST Starting loc. of 0 User Initialization routine
rolls
0 18 35
LNKL # of words in Lonor ed User WBIN
linkage for obj, proc gnore
o 0 18 35
MODES | [identifies current|lidentifies current Character input subrt.| SNAP

°L°79 NOILI3S

£=v

Data | 1lustration Set By) Used By Cleared
Area oo R ‘ P . - -)
WPAC Used for storage of fixed-point FLT,PADD,PADDF PADD,PADDF ,PDVD,PDVDF
MPAC+1| |and floating=point numbers PDVD PDVDF PNLT, PMLT,PMLTD,PMLTF ,PSUB,
. 10 ... ‘ 35 PMLTD PMLTF PQUB B PSUBF , SNAP
: —| PSUBF _ —
MRKER {LBoll number lignored _| |MRg,RSVM,TSRCH CPY,CPYG,CPYGB,CPYP,CPYR, — “—
0 18 35 CPYX CPYXP ERB, INSB, LINKP ,POBS]
. SMEB, SNAP SRCH SRCHP o
MTEST 10-3011 movement statistics given 1f USér Roll expansion routine in
| debug version debug version. lgnored in
non~0-R011 movement statistics never . production version.
! given :
D) | 35 |
OPNERS|| # of rolls to be 0’ {User Initialization routine
opened _ _ ' ~Roll expansion routine
0 18 ST 35
OUTAGL|| Address used to det User PRNT(Y), PRNTC(Y)
effective address 0
for PRNT and PENTC
0 18 35
_ QUTAGS Same as OJTAGL | same as QUTAGL Same as OUTAGL
QUTAG6 Same as GJTAG(, Same as QJTAG!, Same as QJTL‘\G‘A
PLINE | PLINE+n where n = 0,1,,'.,35 or 36 PRNT(Y) PRNTC(Y) PRNT(Y)
Buffer
L__Four print positions]
0 35
PUTIEF| [0 - DeF section 1 veer | wen
follows text -
in text segment ~ _lIgnored
non=0 - Def. secs -
follows linkage
in linkage segment)
0. - 8 35

170°2°79 NO1LD3S

TYNNYW . SYIWWTHO0¥d=-WILSAS SIILINW

¥

Y

‘,) .

Rata |1lustration Set By Used By Cleared By
—_rea | :
RID | Remainder from PDVD Operation | | Povp: SNAP
0 T 35
ROLIMP| |Location of file I I gnored | User BORT
for snap(Y)
0 18 35
ROLPTR| P Offset rel. to | y PRoll # DLOAD, -DNG, DNX,L I NKN CCAT,CNTG, CPYG, DLOAL;, DLOAD,DNG, DNX,
| kop of N gnore N LTNKP, SRCH, SRCHK, SRCHKG, DNG, D _ | NKN LINKP PLXM {__ ULOAD,UNG,UNX
0 18 30 35 | SRCHP, ULOAD UNG, UNX ZBG PRNT(U) SRCH SRCHKC SRCHF;) (Also by user
SWAP, SWIP SNAP ULOAD,UNG,~ prior to one of
S UNX above pops.)
- RolIl expansion routine i Termination routine Initialization
RSIZE| [Maxi lonor {(only in debug version): (only in debug version) Youtine (only in
' 0 18 35 ‘ debug version)
RSPTR | |Offset in current| Ignored Ny User Spill routine RWND
read-spill roll RWND
0) 18 © 30 35
where Np'= Read"Spill rol}
SIGN Sign of number, 0 = + ‘ User FLTD,FLTS,FXDD,FXDS CONR, CONAR, RNUM
non=zero = = ‘
0 35 i
SYMBUF SYMBUF+n where n = 0,1,...128 or 129 {CNTS,NXST,NXSTC,NXSTCS .~CCAT CNTS,LLNKFVPAK PAKA, | PAKR,PAKAR,RSYM
™7 cheracter ooeifions oy PAK, PAKA PAKAR PAKR ,PLXG, PAKAR PAKR,PLXP, RSY
o= - 20 T PLXP, RSY RSYA RSYM ssv1 RSYA ,RSYM, SNAP, L
' | SSYA o~ S?%H SHCHP 'SSY,SSYA,).
- SWAP,SWIP, TSRCH JE— -
SYMCNT|| # of words in Data used by ‘ CNTS,PAKAR,PAKR,ELXG, PLXG PLXP,RSY, ROVA, PAKAR, PAKR, RSYN
1 symbol dnterpreter ! PLXP,RSY, RSY/-\ RSYW SNAP.SSY SSYA
0 18 35 S8Y, SSYA
e ' For Type=1 String
SYMCNT+1 Plex Word | |PxG SNAP RSYM,PAKAR, PAKR
For Type=2 String Character Input Subrt. | Character input subrt.
£ of char, in stringl ignored ! ,
0 18 35

TVANYW ., SHIWW WE00Ud=WILSAS SOILINW

20°/4°Z8 NOILDJ3IS

S=v

Data

3
)

I1lustration

)

Set By Used By Cleared By
Area
STARIF |/ 0 - Special function buffer pot used User Character input subroutine
non-0 - Special function buffer
used
0 35
STRUTY |[__FUNBUF L4n =1 141(oct) | User Character input subroutine
0 18 30 35
FUNBUF - Location of first word in
function buffer .
n - Number of words in function .
buffer
ESCAPE [| O - lgnore NL character and its kegs User Character input subroutine
non-0 - Pack NL character into FUNBU
and examine keys
0 35
T0600D |[1- Fumct. Buff. full User. Executed to(-1) pop
2 Roll O thread - lgnore (Any other value means
- table 14 be written that to(-1) is illegal.)
) 18 35 |
BINREL || # of binary roll | lgnored 1 User WBIN
0. . 18 35
BINREL+1{| # of rel bit roll | lgnored] User WBIN
0 18 35
RELTX |Offset of link word User WBIN
for rel_text ~in I gnoed
definitions section
. L - - - B
RELLK Offset of link word ; User WBIN
for rel link Ignored ?
in def. section 5
0 . 18 . 35
RELSY Offset of link word User WBIN
iiffor rel_symbol in Ignored
#efini i
0 18 35

J

TVﬂNVW . SYIWNWNYO0 ¥d=WILSAS SOILINW

20°L° 78 NOLLI3S

9-¥

Data ; 4lustration Set By / Used By Cleared . '/
Area

-

TVANW . SHIWWYHO0Ud=WILSAS SOILINW

SYMKEY | | | 4 Value used in || ORKEY ' RSKY ,, RSKYA,SNAP, " User
gnored . symbel comparisoa || _ SSKY, SSKYA
0 18 35
SYML Offset in symbol I gnored User 4 | WBIN
|segment .
0 18 35 i
— B T - - . Y b I
THREAD| C(THREAD#nY where ri"= 1,2;..73T,0r32" 7| SRCHP SRCH, SRCHK , SRCHKC, Initialization
0 - empty thread . ' ‘ SRCHP - ‘
non-0 - abs. loc. of Ignored
1st link word on thread
0 18 35 .
TLYIN | [GE-645 Tally Word - Points to next || Characfer input subrt.| SNAP
‘ vail, char, in the current input str SWAP, SWIP
0 : 35
TOCNT ﬁ of illegal exect. of TO pop that may| | User TO
occur before an abort TO
10 N 235 . :
TOP sleo.o TOPN 1 | Any pop that puts irfo. | All pops that refer to i Lower half cleared
TABLE “Location of top I | |on the bottom of a roll} rolls by initialization
for roll N — 7 CPYR,OPN , REL , REMQV ,RSV ' iroutine
o . RSVM , RWND | o
PKFRSW ||_lndex i lgnored] | User ‘ Character Input subroutine
0 18 35

Index Meaning -

0 Get pack-from option from NXST
file (as usual)

1 No pack-from this time; set
C(PKFRSW) = O for next time

2 Pack-from this time; set
C(PKFRSW) = O for next time

3 No pack from ,

4 Pack-from

20°£°78 NOILD3S

‘\) ‘) \'
Data t11ustration Set By Used By Cleared by
Area TRANS+n where n=1 32,44.,200, or 201 octal ' '
TRANS | ‘TKeys [ASCIT rep. Keys " User Character input subrt.
' of char, _ _ _ \ . '
0 9 18 35
T k bits 36-k bits ‘
TYMASK 1 Fudge factor] |User TYMT
0 k 35
k-bit field - flag set here, to indicate
timing information follows
fudge factor - equals time spent in
execut. timing pops; this time may
o be omitted from time calculation
TYMER _QMFJ 0 TYMF TYMT
TYMER+? Cyr, Time (in 64ths of a msec)
| 0 18 35
t
TXTL ! # of words in ignored User WBIN
| text for obj, proc,
f 0 . 18 35
e i
USCNT . USCNT+n _where n = 0,1,,,,(F-4),or (F-5) | ‘
i i o ' Execution of each pop Termination foutine ‘Initialization
0 35 (Debug version only) (Debug version only) routine (Debug
‘Note F = cunent value of false tag ? version only)
VARSIZ' # of words in var. 0 User ERB, INSB,PLG,SMEB,, BLG User
size group CPYGB SNAR zBG
| 0 18 35 | -
WRKSIZ‘ lszg of work | 0 1 User Initialization routine
) 18 35
WSPTR i Offset in current lgnoredl User Spill routine
" write-spill roll
,wqg;e Nw=write-sp11}8roll 32
XITSIZ% [Size of exit | _tignored | User Initialization routine
0 18 35

|

20°2°79 NOILD3S TUNNWW . SUIWWYIO0Ud=WILSAS SIILINW

8-V

MULTICS SYSTEM-PROGRAMMERS ©~ MANUAL SECTION BZ.7.02 PAGE B-1

Appendix B
SPECIAL FEATURES

Function Buffer
Characters from the current input stream may be packed in a
special function buffer, located in the data segment., This

feature is currently used only by FL/I,

The interpreter examines STAR1F, a register in the data
segment, to determine whether to pack characters into the

function buffer:

STARTF| O(FORTRAN console input or any string
input stream) - buffer not used
non-0 (FL/I console input stream only)-
____buffer used 7e
0

If C(STARIF) # 0, then STRMTY, another data-segment register,
is interpreted as a GE-645 tally word, The pops procedure is
responsible for setting STRMTY to its initial value; FL/I

initializes this register as follows:

STRMTY [FUNBUF [Gn - 1_ [&i(oct
0 8 g—L“o ‘23'5

FUNBUF - Location of first word in function buffer,
n - Number of words in function buffer

The interpreter packs all non-skipped characters into the
function buffer, On end-of-1ine, the interpreter continues
with the first character from the next line; if there are
no more lines, it goes to the next pop. Its treatment of

the @) character depends on the contents of the ESCAPE register:

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ.7.02 PAGE B-2

ESCAPE |0 - Ignore @Dicharacter and its keys |
non-0" - Pack @D character into FUNBU
and examine keys

If C(STARTF) = 0, the interpreter ignores C(ESCAPE).

When the function buffer is full, the interpreter sets the data
segment register TOGOOD, as follows:

000001} 000000
0 8 5

The interpreter then executes the pop at location 8 (decimal)
in the procedure segment, This pop may be a jump to a routine
that copies the contents of the function buffer onto a roll
and reinitializes the buffer., The last executed pop in the

routine should be to(-1):

0 8 5

Special Version of TO Pop -- to(-1)
. POP: TO

FORMAT: to(=1)
FUNCTION: If C(TOGOOD) 0-17 = 1, return to point in character

input routine at which function buffer overflow

occurred, and proceed as if no overfliow.

If C(TOGOOD) 0~-17 = 2, then call the symout entry in
the FL/I command to write out roll 0 and the thread
table, This feature allows the user to predefine
symbols, FL/I uses this feature to save the symbol
table for initialization on future assemblies.

(See MSPM BX.7.01, The f1/1 Command.)

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.02 PAGE B-3
Otherwise, perform function of ordinary TO pop.

COMMENT: to(=~1) clears C(TOGOOD) after testing it.

CCAT Pop =-- Abnormal Case

If the total number of characters in a concatenated string

would be > 511, then the interpreter sets C(TOGOOD) 0-17 = 3, and
executes the pop at location 10(decimal) in the procedure
segment. This pop may be a jump to a routine that starts

a new string instead. This routine should not contain a

to(-1) pop.

Pack-~F rom Switch

The pack-from switch, PKFRSW, regulates the use of the
pack-from option (see NXST). This register, located in the

data segment, has the following format:

PKFRSW [index ignored |
0 18 35
Value of Index Meaning
0 Get pack-from option from NXST

file (as usual)

1 No pack-from this time; set

C(PKFRSW) = O for next time

2 Pack-from this time; set C(PKFRSW)

0 for next time

3 No pack=-from

L Pack=-from

