MULTICS SYSTEM=-PROGRAMMERS © MANUAL SECTION Bz.7,01 PAGE 1
Published: 08/16/68

Identification

Implementation
B. P. Goldberg, 1. B. Goldberg

Chapter 1.

INTRODUCTION
A, PSEUDO-COMPUTER
Pops are machine instructions for a pseudo-computer simulated
on the GE-645, This pseudo-computer was designed specifically
for writing compilers and assemblers, Each pop corresponds to
a GE-645 machine language subroutine. In order to execute a
pops language program, an interpreter interprets each pop

and calls the proper subroutine,

This process involves the following segments:

Procedure segment (pure) -~ Contains the compiler or
assembler logic written in
pops language

Interpreter segment (pure) =-- Contains the interpreter

Data segment (impure) -~ Contains the memory and registers
of the pseudo-computer

Input segment (pure) -- Contains the source procedure to
compile or assemble

List segment (impure) ~- Contains object listing
Error segment (impure) -- Contains error messages
Text segment (impure)

Linkage segment (impure) For object procedure

Symbol segment (impure)

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ,.7.01 PAGE 2

Each segment contains up to 262144 36-bit words. The parenthetical
remarks ""pure" and " impure" apply only when the pops interpreter

is simulating the pops procedure,

Figure 1 illustrates the relationship between the interpreter,

procedure, and data segments:

Interpreter segment

Procedure segment (FL/T | |

Data segment associated [PROCT | %ﬂ %ﬂ

with assembly or
compilation

Figure 1. Relationships Between Segments in
Pseudo-Computer

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 3

B. POPS LANGUAGE
1. Pop Format
A pop is a 36-bit word consisting of two 18-bit halves, the

operand and the pop number,

In the FL/I syntax used in this manual, the pop name is

a function, and its operand is the first argument.

Arguments are enclosed by parentheses and separated by

commas, (See Paragraph B.2 for an example of the use of

two arguments.) Comments are enclosed in quotes,

CAUTION: A semicolon, quote, or tilde in a comment must
be preceded by a tilde (octal 176). For simplicity,
this manual does not use these three characters
in comments,

EXAMPLE :

POP: zer(varsiz)
Assume that VARSIZ is at location 3237 in the data segment,

Operand Pop Number
fVARSIZ ZER) (These are octal numbers)

0 18 35

Each pop number represents a pop name., The 250 pop names
are listed in Figure 2, The pop number of each pop is
determined by an octal addition of the appropriate row and

column number; e.g., ZER = 270+k4,

*
000
010
020
030
oo
050
060
070

100
110
120
130
£ 140
150
160
170

200
210
220
230
240
250
260
270

300
310
320
330
auo
350
360
370

&

MULTICS SYSTEM-PROGRAMMERS © MANUAL

TABLE OF PDP WUNBERS oo F = 286 e~ T s 542,

0
BORT
ADDIP
T0
CONA
cpYx#
DLOAD
ERB
ERSP

re
GOBP
IMP
MLTSH
MRX
NXSTSS
PADDY
PLG .

POBP
CPYGS
PTCTP
REL
RSVYM
SBSP
SEQ
SLTP

SNAP

SRCHNK
STORP
UNG
WBIN
XNTV
FLT
STU

0

1
USER1
ADS
CCAY
(ofe}].3 Y
DO
DNG
INSH
EXES

FIXD
INC
JMPP
MORB
NGT
ONE
PAK
PLXS

poBS
PRY
PTP
RENOY
RSY
SCA
seQe
SNE

SNAPC
SRCHKS
sUB
UNX
WRKYL
XNPF
EXITP
STUP

1

2
USER2
ADSP
SEAW
CONBA.
D1
DNX
SMEB
EXIT

FPIXS
INS
INX
MODNB:
NGTS
JPN
PAKA
PLXM

POPNIP
PRW
PTPP
RNUNM
RSYA
SCAP
SEV
SME1

SNZ
SSKY
SWAP
LAY
WRKR
XNPY
AS

)

Table of Pop Numbers

3
users
AND
CLDAD
cry
b2
DAY
EROR
EXT

FLYD
INs1
Jss
M3DD
N3
or
pac?
PLXP

PRD
PRUYX
pHC?T
coNr
RSYN
s

SEvs
sE2

suzs
SIKYL
SWHIP
e

SH
xnre
AG

3

Figure 2

)
USBERU
ANDI
ENT
CPY?
b3
poMy
ERRP
EX?I

FLrs
INS2
LINKN
MODO
WXCSH
ORKEY
pBCTP
PMLT

PRE
PSAY
RCH
CONAR
PARR
SCHA
SFAL
TER

SORTR
ssY
TSRCH
w2
XLR
XNTYV
A3

4

SECTION BZ,.7.01

3
USERS
ANDIP
CNT6
CPYG
DY
DVD
ERRCC
Ex7IP

rxdp
ZERD
LOAD
MOY
NXIcH
ORS
PDES
pMLTD

PRES
- K1)]
RCHA
RSKY
PAKAR
ScKy
§67

SMET

SRCH
SSYA
TYMF

T W3

XLRS
a6
A2

PAGE L4

]

ADD
ANS
enes
eres
pS
EAW
ERRLlEC
ract

rxes
TNsI
MLY
MOVY
NXsST
eRsP
pOVD
PHLTY

YT
PSUBY
RCKY

RSKYA
RWND

SCKYA
5GP
suele

SREH?
sTal
TynT
we
X¥oW
xur?
A

, -
ADDE
Ans#
con
cpYY
per
£} |
ERS
rex

GoB
Iusey
MLTS
LT
NXSTC
PADD
POVEY
?o8

PRNZ2C
PIC?
RCKYA
RSY
S8S
scuy
siT.
SME?P

LENE?
STOR
ULoAd
ws
XNIP
XNy$
AO

”‘ MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 5

The operand is interpreted in one of the following ways:

1. As the offset of another pop (relative to location O
in the procedure segment)

2. As the offset of a data word (relative to location O
in the data segment)

3. As a literal number

4, As another pop number (See Chapter 2, Paragraph G),.

The operand may also be ignored. See the example of NXCH

below for format,

The pop number determines how the operand is to be interpreted.

This is illustrated in the following chart:

’. Interpretation
Pop Number Pop Name of Operand Example
274 ZER Address in data zer(varsiz)
segment :
120 JMP Address in pro- Jmp(init)
cedure segment
1y NXCH Ignored nxch()
022 CEAW Literal number ceaw(4096)

Note: nxch() is equivalent to nxch(0)

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ.7.01 PAGE 6

2. True/False Indicator
The pseudo-computer has a true/false indicator. There is an
option to execute a pop only if the indicator is set true or
only if the indicator is set false. 1In source language, the
T/F tag specifies this option. T and F have values that are
added to the pop number, These values are derived as follows:

F = 6 + the number of pops

T=2*F
Since there are currently 250 pops, the current values of T
and F are:

F = 256 decimal = LOO octal

T = 512 decimal = 1000 octal
The T/F tag must always be preceded by a comma. This is

true even if the operand field is null, e.g., nxch(,t).
Note: nxch(,t) is equivalent to nxch(0,t)

EXAMPLES
Pop: zer(sign) Pop: zer(sign,t) Pop: zer(sign,f)
Pop number: 274 Pop number: 1274 Pop number: 674

C. PROCEDURE SEGMENT

1. Reserved lLocations
Locations O to 10 (decimal) in the procedure segment are

reserved for the following purposes:

Dec, location
0 Contains the pop jmp(fstpop), where FSTPOP

{s the offset of the first pop to be executed

MULTICS SYSTEM-PROGRAMMERS “ MANUAL

3

1

10

L]

Dec, location

SECTION Bz,7.01 PAGE 7

Contains the pop executed on "advance to

next symbol" (See SSYA and RSYA pops)

Contains the pop executed on end-of-file

(See NXCH pop)

Upper half contains
routine; lower half

2, Paragraph X.)

Upper half contains

lower half contains

Upper half contains

lower half contains

Upper half contains

lower half contains

Upper half contains

lower half contains

offset of USER1

contains 0 (See Chapter

offset of USER2 routine;
0

offset of USER3 routine;
0

offset of USERL routine;

offset of USERS routine;
0

Contains pop executed on function buffer

overflow (See Appendix B)

Currently not used,

future use

but reserved for possible

Contains pop executed on concatenation -

overflow (See Appendix B)

Each offset above is relative to location O in the procedure

~ segment,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.0f PAGE 8

2. QOrder of Execution

The interpreter first executes the pop at location FSTPOP,.

It then executes pops in sequence, unless a pop causes change
of control (e.qg., JMP) or reads a character from the input
stream (e.g., NXCH). (See Chapter 2, Paragraphs E and J

for details)

D. POP COUNTER

The pop counter is an 18-bit counter which points to the
pop currently being executed., Therefore, it is the
instruction counter of the pops machine. This counter
is initially set to FSTPOP. It is normally incremented

by 1 after the sequential execution of a pop.

If a pop causes change of control, then the interpreter

sets the pop counter equal to the operand of the executed

pop.

Any pop that reads a character or string from the current

input stream causes the pop counter to be set as follows:

1. 1f end-of-line or end-of-stream has not been reached,

then the pop counter is incremented by 2
2., Otherwise, the pop counter is incremented by 1.

The pop counter is simulated by the GE-645 index register 1,

J

MULTICS SYSTEM-PROGRAMMERS ¢ MANUAL SECTION BZ.7.01 PAGE 9
E. DATA SEGMENT

The data segment has the following format:

000000 Required Static
Optional
Rolls Dynamic
Work Stack Stacks
Dummy S tack
777777 Exit Stack]
0 35

1. Static Storage

The items in static storage are of fixed size and are in fixed

locations.

The format of required storage is the same for each pops
procedure., (See the FL/I assembly listing for a 1ist of the
items in required storage.) The optional storage differs for
each procedure; i.e,, optional storage for FL/I has a different
format from that for FORTRAN, The optional storage confains
constants, variables, and fixed-size tables that are used

by the procedure,

The interpreter refers to locations in required storage directly;
it refers to a location in optional storage either by a pointer
in required storage or by using the operand of a pop (the latter

method is used most frequently).

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ.7.01 PAGE 10

Three locations are fixed in every data segment:
000000 -- The first location
(See FL/1 assembly 1isting) -- The start of optional storage
777777 -- The last location
The user specifies the following starting locations in
one-word registers in the data segment:
Starting location of rolls - Specified in C(LAST) 0-17
Starting locations of work, dummy, and exit =-- Specified
indirectly in C(WRKSIZ) 0-17, C(DMYSIZ) 0-17, and
C(XITS1Z) 0-17 (See Paragraph E.3.)
Each of these registers should contain zero in the lower

half,

Most registers and tables storing half-word infcrma.ion use
the Qpper half., (Exceptions are noted in this manual,
whenever they occur,) For safety, the lower half of each
of these words should contain zero, even though the
interpreter may sometime ignore its contents,

2. Rolls

A roll is 1like a table in function; however, its size and
location in core storage are dynamically variable during
pops interpretation., Rolls are in the data segment, and
there are a maximum of 64 rolls; the first is roll O,

the second, roll 1, etc. The notation Roll N is used,
where N is 0,1,2,...63. Rolls are stored in sequential
order by roll number, and words on rolls are stored in

sequential locations.

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ.7.01 PAGE 11

The interpreter allocates an initial amount of space for each
roll, If, during interpretation, available space in a particular
roll is exceeded, the interpreter may allocate more space for

that roll. Because storage remains sequential, this reallocation
may cause other rolls to be moved. In this case, each word in

the affected rolls is moved by a fixed amount; however, the

order of the rolls does not change, nor does the relative position

of data within a rol1,

EXAMPLE :
Before After
Roll 5. Rol1l1 5

word 1 Roll 6 T Avatlable |
word 2 Space
word 3
word 1 Roll 7 word 1 Roll 6
word 2 _ _word 2 e
word 3 word 3
word 4 word 1 Roll 7
Available word 2

Space word 4

Rol1l 0 is never moved; however, it may be expanded. A1l other

rolls may be moved and expanded.

There are four significant locations on each rol1l:
The anchor of a roll is the current location of the first

word allocated for the roll.

The floor of a roll is one more than the current location

of the last word allocated for the roll.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION Bz,7.01 PAGE 12

The top of a toll is the current location of the first

unreserved word on the roll, (See RSV and REL pops.)

The bottom of a roll is one more than the current

location of the last word used on that roll.

Each of these locations is relative to location 0 in the

data segment, 1If there are no reserved words on a roll, then

the top and the anchor are the same location., If no unreserved
words are used, then the top and the bottom are the same location.
If the roll contains no words at all, then the anchor, top, and

bottom are the same location. The four locations are shown below:

:‘““RE§§fV§E'"”' lkk—Anchor
words
— Used unreser- kE—ITop
ved words |
“Aval 1ab l.e E—Bottom
words
<—Floor

The floor of each roll, except the last allocated roll, is
the anchor of the next roll, Thus, the floor of the last
allocated roll is the first location available for roll
expansion. The user may make even more space available

by removing rolls not in current use, (See OPN and REMOV

pops.)

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.,7.01 PAGE 13

A roll expands downward from the anchor towards the floor. When
the bottom reaches the floor, the interpreter must allocate more
space to expand the roll, The interpreter appends a group of n
consecutive words to a roll, as follows:

1. The interpreter bumps the bottom by n; i.e., moves the

bottom down n words towards the floor.

2. If the bottom has reached (or passed) the floor, the
interpreter allocates more words and adjusts anchor,

top, bottom, and floor, if necessary.

3. The interpreter moves words 1 to n into the n locations

above the new bottom.

Four tables in the data segment, each containing 64 entries,
give the current anchor, top, bottom, and floor for each roll:
C(ANCHOR+N) 0-17 = anchor for roll N
C(TOP+N) 0-17 = top for roll N
C(BOTTOM+N) 0-17 = bottom for roll N
C(ANCHOR4N+1) 0-17 = floor for roll N

The lower half of each of these entries contains 0. This

portion is initially cleared by the interpreter,

The anchor and floor tables are interwoven, as shown below:

Anchor ,
Roll 0 F loor
Roll 1 Roll O
Roll 2 Q 1
. Roll 2
Roll N Roll N=-1
RoTT N

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 14

Figure 3 shows the relationships between entries in the ANCHOR,
TOP, and BOTTOM tables and the roll locations they describe.

a, Roll Pointers

A roll pointer is a word that contains an offset P in bits
0-17 and a roll number N in bits 30-35, It points to the

location that is P words after the top of roll N.

EXAMPLE : Roll 6
Roll Pointer 1°P
3 x| 6] +1
HT""%%Fso SB\\\\s*
+2
3
0 ~35

If Y is a location containing a rol1 pointer, then RP(Y) is
defined as the location to which the roll pointer points;
i.e., RP(Y) = P+C(TOP+N) 0-17.

Ro11 pointers are useful, since the distance from the top of

a roll is constant, even though the roll may have been moved.

While the contents of any location may be used as a roll
pointer, each roll has a particular roll pointer assigned
to it in the ROLPTR table, located in the data segment.
For example, ROLPTR+5 is the roll pointer assigned to roll
5. Many pops use the ROLPTR table to record the current

position on a roll,

~—

MULTICS SYSTEM-PROGRAMMERS © MANUAL

SECTION BZ.7.01

PAGE 15

Anchor+0 [Roll 5
’___,__—a-”’”J7ALPHA Anchor
Anchor+5 [ALPHA TO00O000
Anchor+6 [DELTA [000000 Reserved
Anchor+63 | BETA Top
O T8 35
Top+0 I ggrzggtly
Top+5 [BETA 000000
. GAMMA Bottom
Top+63 |
0 18 35 |
Bottom+0 [DELTA F loor Anchor for
roll 6
Bottom+5 [GAMMA [DODOOOY 0 =
Bottom+63) |
0 18 35
Figure 3: 1Illustration of Rolls and their Corresponding

Tables

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ.7.01 PAGE 16

b, Guess Table
The GUESS table in the data segment specifies the initial

allocation of space for rolls and the extra amount of storage to
allocate in case this initial storage is exceeded. There are 64
entries in the GUESS table, The following chart {1lustrates how
the interpreter uses the GUESS table to allocate space for roll

N: (I and J are unsigned integers,)

Number of words to allocate
C (GUESS+N) On initiation of On first ref.
0-17 18-35 pops procedure to roll On subsequent allocations
I J J 0 I
1 -J | J/100 0 ‘ (I*J)/10000
-1 J 1 J I
-1 -J 1 A J/100 (1*J) /10000

The numbers in the last two columns represent minimum
guesses, If more words are needed than are specified
in these columns, the interpreter will allocate the

required number of words.

The upper half of OPNERS, a one-word register in the data segment,
specifies the number of rolls to be opened. The interpreter
allocates space only to these rolls. If OPNERS specifies N

rolls, theh the interpreter allocates space to rolls 0 through

N-1 (inclusive).

’p- MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 17

c. Composition of Rolls

1) General
A roll may consist of single words, groups, or plexes (See

Paragraph H.4 for a discussion of plexes.)

2) Groups
A group consists of 0, 1, or a consecutive series of words;

e.g., a 10-word group consists of 10 consecutive words on a

roll,.

There are two types of groups: fixed-size groups and
variable-size groups. A roll containing fixed-size groups

“may not contain variable-sized groups, and vice-versa.

~
The GRPSIZ table in the data segment indicates the type of
groups on each roll, This table contains 64 entries, one
for each roll:
GRPSIZ+N [G [ignored |
0 18 35 \
If G#0, roll N consists of G-word fixed-size groups. These
groups are stored contiguously,
EXAMPLE :
} 100 0
Group 1 - 200 0
300 0_
4100 0
Group 2 500 0
— 600 0
700 0
Group 3 800 0
900 0

o
—
(04]
W
wn

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 18

If G = 0, then roll N consists of variable-size groups. Each
variable-size group is preceded by a variable-size word (VSW)

with the following format;

L v][O0 |
0 18 35

where V = the number of words in the group; i.e., the number of

words following the VSW, Variable-size groups are also stored

contiguously,

EXAMPLE ¢

Group 1 100
1 200

3%0
Group 2 400

200
600

Group 3 700
800
900
0 18 35

alleie]e)e) D‘OOO oO|l0|o

Certain pops use the upper half of‘VARSIZ, a one=word register
in the data segment, to determine the number of words in a

variable-size group (excluding the VSW),

d. Special Rolls
Roll O must be used for the symbol table., The first eight

words on roll 0 have the following format:
VSW

7-word group

o elalie] e e]e] e

obo O|0jo|oN

18 35

()

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ.7.01 PAGE 19
There are two reasons for this:
1. To avoid having a word in roll 0 at an offset of O

from the top

2. To provide an additional area for starting a type-2 thread
for a search (See Chapter 2, Paragraph R.)

The symbol table starts at location 8 in roll O,

The user must reserve the following rolls for their special

purposes, only if he uses the pops that refer to these

rolils:
Rol1l i Purpose Used By
1 Error roll EROR, ERRCC, ERRLC,
ERRP, PRNT, PRNTC
2 Save roll PRES, PSAV, PDES
3 Fact roll FACT, TYMF, TYMT
L Swip rol1l SWIP
N-23% Binary roll WBIN, RWND
where
N = C(OPNERS) 0-17
N-1 and N-2 Spill rolls RWND, DNX, DNG, DLOAD
where
N = C(OPNERS) 0-17
M Relbit roll WBIN
where

M = C(BINREL+1) 0-17
(See Paragraph Y.2 in MSPM BZ.7.02.)

The uses of these rolls are covered in the descriptions of the

pops.

*The interpreter actually uses C(BINREL) 0-17 or the operand
of the WBIN pop to determine the number of the binary roll,

N-2 is the binary roll in a two-pass assembler or compiler,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION Bz.7.01 PAGE 20

3, Buffers

Three buffers appear below the last roll in the following order:

WRKBUF =~ work buffer or work

DMYBUF -- dummy buffer or dummy
XITBUF =-- exit buffer or exit

These buffers are fixed-size stacks.

in the Tower halves of three one-word registers in the data

segment: WRKSIZ, DMYSIZ, and XITSIZ.

The buffers may be pictured as follows:

LSize specified in WRKSIZ

7Size specified in DMYSIZ

Work Tof words cur=- |)
rently in
work
Work Botton
<
Work Floor & words cur-
Dummy Top rently in
' dummy
Dummy Bottom :
Z
Dummy F1loor | words cur-
& rently in
Exit TOp exit

gSize specified in XITS1Z

Exit Bottom

| —

Exit Floor

Three 18-bit counters point to the current positions in the

three buffers: WRKCTR, DMYCTR, and XITCTR.
simulated by GE-645 index registers 3, 5, and 4, respectively.

WRKCTR and DMYCTR point one word above the bottom of work and

dummy, respectively.

of exit.

XITCTR points two words above the bottom

Their sizes are specified

These counters are

)

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 21

a. Work Buffer
The work buffer is a push-down accumulator, used for storing

data.

New words may be loaded into work one word at a time. In
this case, the interpreter bumps the bottom of work by 1
word, adds 1 to C(WRKCTR) and moves the appropriate data

into word 1.

EXAMPLE :
load(Y) loads C(Y) into word 1
A word may be loaded into current work. In this case, the

interpreter does not adjust the bottom of work.

EXAMPLE :

cload(Y) loads C(Y) into current work
Any number of words (including 0) may be removed from work.
This is called pruning work, 1In this case, the interpreter
subtracts the appropriate number of words from WRKCTR and

adjusts the bottom of work accordingly.

EXAMPLE ;

prw(Y) prunes C(Y) 0-17 words from work
Initially, there is one word in the work stack. This word
should never be pruned. However, the user may load data into
this word. The term work size denotes the number of words
appended to work; e.qg., if work contains two words, the work
size is one. N-1 words may be appended to work, where

N = C(WRKSIZ) 18-35,

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ,7.01 PAGE 22

WO is the symbolic location for current work. The five

locations preceding WO (if present) are referred to respectively

as W1, W2, W3, W4, and W5;
Last 6 locations in Work

W5|
W

W3
W2
w1

wo
Work bottom
These locations are adjusted appropriately, whenever the bottom

of work changes.

EXAMPLE ; _
Original Configuration After Loading New Word
W3 wh
w2 W3
W1 w2
wo w1
Work bottom wo
Work bottom

b. Dummy Buffer
The dummy buffer provides a method of indirect addressing. It

is used to store addresses rather than data. The difference may
be illustrated as follows:
stor(w1l) stores current work into previous work
stor(d1) stores current work into the location specified in
the upper half of the previous dummy
New words may be loaded into dummy one word at a time., 1In this
case, the interpreter bumps the bottom of dummy by 1 word, adds

1 to C(DMYCTR) and moves the appropriate data into word 1,

A word may not be loaded into current dummy.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 23

The dummy may be pruned by any number of words (including 0).
In this case, the interpreter subtracts the appropriate number

of words from DMYCTR and adjusts the bottom of dummy accordingly.

EXAMPLE ¢
prd(Y) prunes C(Y) 0-17 words from dummy

Initially, there is one word in the dummy stack. This word
should never be pruned. The user should not load data into
this word. The term dummy size denotes the number of words
appended to dummy; e.qg., if dummy contains two words, the
dummy size is one. N-1 words may be appended to dummy, where

- N = C(DMYSIZ) 18-35,

DO is the symbolic location for current dummy. The five
locations preceding DO (if present) are referred to respectively

as D1, D2, D3, D4, and D5,

C. Exit Buffer

The interprefer adjusts the exit buffer, upon entering and

leaving a subroutine. This buffer contains two-word entries.

The JSB pop is used to transfer to a subroutine. Before
entering the subroutine, the interpreter adjusts the exit
buffer as follows:

1. It adds 2 to XITCTR

2, 1t bumps the bottom of the exit buffer by 2, and puts

the following information in words 1 and 2:

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 24

word 1 T + Tocation of current size of
JSB pop work
word 2 | 0 (indicates false st
0 18 35

Word 2 is the current true/false indicator for the
pseudo-computer, If C(word 2) = 0, the current status is
false; if C(word 2) # 0, the current status for the
pseudo-computer is true. This word is set by pops in the
procedure segment; e.g., the search pops (See Chapter 2,

Paragraph R).

Upon leaving a subroutine, the interpreter prunes two words

from the exit buffer,.

The user cannot load words into the exit buffer. However, he

may prune the buffer by any number of word pairs (including 0).

EXAMPLE :
pre(Y) prunes exit by C(Y) 0-17 pairs of words

Initially, there are two words in the exit stack. The interpreter
sets C(word 2) = 0; C(word 1) is indeterminate. These words
should never be pruned. The term exit size denotes the number

of words appended to exit; e.g., if exit contains four words,

the exit size is two. N-2 words may be appended to exit, where

N = C(XITSIZ) 18-35,

~

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 25
F. PRODUCTION AND DEBUG VERSIONS OF THE INTERPRETER SEGMENT

There are two versions of the interpreter segment: production
and debug. These can both run with any data or procedure
segments., The debug version is 50% slower than the production

version, However, it provides important statistics.

The following tables (located in the data segment) are set
during the debug version and are dumped upon termination

of a procedure (they are ignored during the production version);:

USCNT -- 264 word table., The first F-6 locations correspond
to each of the F-6 pops, where F is the value of the false
tag. Each of these locations records the number of times
the corresponding pop was executed. The functions of the

other locations are illustrated on the following chart:

USCNT+0
Pop Counts
USCNT+(F=6) [ETapsed time 1n seconds
Unused
USCNT4F Maximum work size

USCNT+(F+1) [MaxImum dummy size
USCNT+(F+2) [MaxImum exit size

Unused
USCNT+2 64 0 5

RSIZE -- Table containing one word for each roll. The upper
half of each entry is set to the maximum count of each roll
(maximum number of words from top to bottom). The lower

halves are ignored.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 26

MTEST is a one-word register in the data segment. If MTEST is
set to 0, the debug version records statistics about each roll
movement and dumps this information upon termination of a

procedure:

Number of roll moved
Number of words appended to roll
Number of words originally required by roll >_For each roll

movement
Method of obtaining words

Elapsed time to perform move (in seconds)
e

The debug version also dumps the following general statistics:

Total number of pops executed
Elapsed time in seconds
Number of roll moves

Elapsed time in doing rol1 moves (in seconds)

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 27

G. DATA REPRESENTATION

1. Number Representation

The pops interpreter uses standard GE-645 two“’s complement
arithmetic for addresses, fixed-point numbers, and floating-point
numbers; e.g., address -1 is equivalent to octal 777777.

(See GE-635 Reference Manual for complete description).

Chapter 2, Paragraph 0, covers the representation of fixed-point
and floating-point numbers in the pseudo-computer,

2. Text Representation

a. Character Set

Most text for the pseudo-computer is written in the ASCII
character set (See Chapter 2, Paragraph Y.1 for an exception.)
Figure 4 shows the 128 ASCII characters and their corresponding
octal codes, 000-177. The interpreter also uses two special
characters internally.

octal 200 - Skip character

octal 201 - End-of-file character
Each of these 130 characters is represented in a 9-bit field;
e.g., A (octal 101) is represented as 001000001, Therefore,

a word in the pseudo-computer may contain up to four characters,

b. TRANS Table

The TRANS table in the data segment contains one word for each
of the 130 characters mentioned above, Bits 9-17 of each word
contain a copy of the ASCII or special character. This field
coincides with the offset of the word from the first word in

the TRANS table; i.e., C(TRANS+N) 9-17 = N. The remaining bits

MULTICS SYSTEM-PROGRAMMERS ©~ MANUAL SECTION BZ.7.01 PAGE 28

are called keys and may be used to store any information
pertaining to the characters, Each bit may correspond to a
special property of one or more characters; e.qg., alphabetic

or numeric, The TRANS table is illustrated below:

000
001
®

TRANS 4000
+001
[]
.
+177
+200
+201

.
177 _
74200000000
74207 1000000

n<< ® R

N W< O X

The user provides information for TRANS through TRANS+177 8.
The interpreter sets TRANS+200 8 and TRANS+201 8,

MULTICS SYSTEM-PROGRAMMERS © MANUAL

ASCII Character Set on Multics

SECTION BZ.7.01

PAGE 28a

0 1 2 3 L 5 6 7
000 BEL
010 BS HT NL VT NP RRS BRS
020 HLF HLR
030
Ou40|Space| | " o 9 % & ‘
050(() * + , - /
060| O 1 2 3 L 5 6 7
070| 8 9 ; < = > ?
100| @ A B C D E F G
110 H I J K L M N 0
120 P Q R S T u \Y W
130| X Y z [\] - -
40| ° a b c d e f g
150| h i] k 1 m n o
160| p q r s t u v w
170] x y z L g1 J n

Multics Definitions:

NL | New Line (carriage return and line feed)
HLF | Half-Line Forward Feed

HLR | Hal1f-Line Reverse Feed

RRS | Red Ribbon Shift

BRS | Black Ribbon Shift

NP | New Page (carriage return and form feed)

Figure 4

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.O1 PAGE 29
H. STRINGS

The interpreter may combine ASCII characters into three types of

strings:

Type 1 -- Counted
Type 2 -- Non-counted

Type 3 -- Special

1. Type-1 Strings

The first character in a type-1 string indicates the number
of characters (0-511) that follow in the string. If the
last word in a type-1 string is not full, the remainder

of the word is filled with ASCII blanks; these blanks

are not part of the string.

EXAMPLE
Type-1 String "at"

[002 |141] 061]040 |

0 8 27 35

Oct., ASCII ASCII ASCII
2 a 1 blank

Future examples use the following abbreviation:

[2 Jal1 (3]
0 9 18 27 35

The null type-1 string is shown below:

T
0O 9 18 27 35

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ,7.01 PAGE 30

2. Type-2 Strings

A type-2 string has no initial counter character; instead, the
last character in the string is the end-of-file character, 201.
If the last word is not full, the remainder of the word is
filled with ASCII blanks; these blanks are not part of the
string. A type-2 string may contain 0-512 characters,

excluding the end-of-file character.

EXAMPLE :
Type=2 String "al"

a {1 |201] ¥
0 9 18 27 35

The null type-2 string is shown below:

201 |¥ | B ¥
0 9 18 27 35

3. Type-3 Strings

A type-3 string represents a complete FORTRAN source statement,
It contains one variable-size group for each line in the
statement., The first two words of each group are control
words, The remaining words represent the line (4 columns

per word), 1If the last word in a group is not full, the
remainder of the word is filled with skip characters (octal

200). The maximum number of characters in a group is 163,

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BZ,7.01 PAGE 31

Each group in the type-3 string has the following format:

of words in # of
group in octal |groups(G) O

0 alter number
C(col.1)| C(col1.) etc.

L]
L
[

0 9 18 27 35

Each line of a FORTRAN source statement ends with a new-1line
character @D. In forming a type-3 string from console input,

the interpreter interprets the new-line character as follows:

1. The sequence %@ means ignore both characters, and consider

the next line as continuation,

2. @D preceded by a character other than % means ignore @D,

and terminate the type-3 string.
The % and @D characters are not included as part of the string.

Comments may not appear in type-3 strings. Thus, the user must

obey the following rules:

1. A comment may not appear in the middle of a FORTRAN statement:

a comment may not follow %@ in a FORTRAN statement.
2., A comment may occupy only one line

3. A comment may begin only with a star; the procedure segment

is responsible for recognizing the star.

Figure 5 shows a FORTRAN statement and its representation as a

type-3 string.

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION Bz.7.01 PAGE 32

FORTRAN Statement
Alter Number

12345 a=b? 30
+C% 31
+d 32

Representation as type-3 string

Dr-!:'

O
o
(e} NIEXIN
o
N

+
m'4cm0
0]
™)
o
o
Ex
N

Figure 5, Typical Type-3 String

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION Bz.7.01 PAGE 33

L, Plexes
The interpreter may convert a type-1 string to a plex, by

appending a word:

K [special (Bits 18-35 have special meaning to
0 - 18 k] the interpreter.)

where K {s the number of words in the string. K is derived
as follows:
Let C = the first character in the type-1 string
K=C/4 + 1 (ignoring any remainder)
S. SYMBUF
SYMBUF is a region in the data segment used for forming type-1
or type-2 strings. The maximum capacity of SYMBUF is 511
characters for a type=-1 string and 512 characters for a type-2
string. The interpreter will abort the pops procedure if either
1imit is exceeded. The best size for SYMBUF is 129 words, since
fhis is one more word than necessary for the largest string.
SYMBUF is preceded by two words, SYMCNT, and SYMCNT+1, These
words have the following format:
C(SYMCNT) 0-17 -- Number of words in symbol
C(SYMCNT) 18-35 =-- Data used by the interpreter
C(SYMCNT+1) == For type=-1 string, plex word
For type-2 string, upper half contains
count of number of characters in the
string (excluding the end-of-file

character), lower half is ignored

EXAMPLE ;
A plex in SYMBUF

SYMCNT 3 0
SYMCNT+1[__ 3 X
SYMBUF 8l c ol n
t1 i n| u|
el B B’J
0 9 18 2735

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 34

I. NOTATION USED IN THIS MANUAL

1. Coding Examples
FL/1 syntax is used in all coding examples.

2, Capitalization
The following names are capitalized:

1. Names of pops, variables, and registers, outside

of coding examples
2. Generic names in coding examples

Otherwise, all names are written in lower case.
Examples:
NXCH pop
MRKER register
add(Y), where Y signifies "any operand"
add(alpha), where ALPHA is the name of a particular operand

3. Number Representation

Numbers are represented in octal, unless otherwise indicated.
A1l number fields are right-justified; e.g., 6 and 000006

are equivalent in an 18-bit field. Since FL/1 syntax accepts
decimal mode as the normal default mode, small numbers (0-7)
are used in the examples whenever possible. Symbolic addresses
are used in some examples in place of large octal addresses,

for simplicity.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION Bz,7.01 PAGE 35

4, Terms
work size - Number of words appended to work stack.
Initially, work contains one word; this word is

not included in the work size.

dummy size - Number of words appended to dummy stack.
Initially, dummy contains one word; this word

is not included in the dummy size.

exit size - Number of words appended to exit stack,
'Initia11y, the exit stack contains two words;

these words are not included in the exit size.

prune - To remove zero or more words from a stack or roll
word k - The kth word in a group of contiguous words; i.e.,l
in a group‘of contiguous words, the first word

is word 1 (unless otherwise indicated)

bumping bottom - Moving bottom of a roll or stack down by
a specified number of words, to allocate more

words for current use.
key - Bit describing some property of a character or string.

counting a string - Computing the number of words and

the number of characters in a string.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 36

file - One or more consecutive words in the data segment,
used by a pop for information. The oberand
of a pop using a file is the location of the
first word of the file.

loctr - FL/1 term Fok the current location (like * in

many other assembly languages)

alter number - Number associated with each line of a
source procedure, starting with 1 for the

first line.

go to next pop - Interpret next pop

5. Symbols

Y - Operand of the current pop
Z - Operand of the next pop
C(Y) - Contents of bits 0-35 of operand Y

DP(Y) - C(Y,Y+1) in double precision, where Y must be

an even address

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BZ.7.01 PAGE 37

C(Y) k = Con;ents of bit k of operand Y, where k = 0,1,2,...,
or 35

C(Y) 0-17 - Contents of upper half of operand Y
C(Y) 18-35 =~ Contents of lower half of operand Y

N - A number., Unless otherwise specified, N is a roll
number,

M - Roll number, Used when description refers to two rolls
x in diagram - Ignore (unless otherwise specified)

RP(Y) - Y is a location containing a roll pointer:

[P [x TN], where P is an offset from the top
18 30 35 of roll N

RP(Y) = location to which roll pointer points;
i.e., P + C(TOP+N) 0-17

VSW - Variable size word

.1bgical. - A logical operation; e.g., .and. = AND
t - True tag |

f - False tag

¥ - Blank |

@ - New 1ine character

WO - Current work

W1, W2, W3, W4, and W5 - The five locations preceding WQO:
Last 6 locations in Work

w5
CWh
w3
w2
w1
WO
Work bottom

DO - Current dummy

D1, D2, D3, D4, and D5 - The five locations preceding current
dummy

A0, A1, A2, A3, A4, A5 - See Chapter 2, Paragraph G

