
TO: 
FROM: 
SUBJECT: 

MSPM Distribution 
R. H. Canaday 
BCPL. 

DA TE: 06/18/68 

This is the first of a set of six documents on the BCPL 
compiler for MULTICSo All documents assume that the reader 
is familiar with the BCPL language as implemented on CTSS. 

The documents to be issued in this series are: 

BZ.6.00 
.6801 
e6 0 02 
a6.03 
.. 6.,04 
.6005 

Overview 
Language description 
Library routines 
BCPL under MRGEDT 
Code generation strategies 
Executing BCPL code under MULTICS 

Comments will be appreciated and should be communicated to me: 

Rudd Canaday 
BTL - Murray Hill 
Room 2C-513 
(201) 582-3038 



, 

MULTICS SYSTEM-PROGRAMMERS' MANUAL 

Identification 

A BCPL Compiler for MULTICS - Overview 
Ro Ho Canaday 

Purpose 

SECTION BZ.6.00 PAGE 1 

Published: 06/18/6S 

The purpose of this document is to give an overview of 
the BCPL compiler being implemented for MULTICS. The 
reader is assumed to be familiar with reference (1). 

The BCPL-MULTICS compiler will accept any program acceptable 
to the BCPL compiler on CTSS. In addition# the language 
has been extended as described in BZ.6001. 

Status 

A compiler is now running under GECOS which will produce 
EPLBSA source. Compilations can be submitted through 
MRGEDT. TEXT, LINK, and SYMBOL files will be returned 
(see MSPM BZ.6.03). This compiler produces pure procedure, 
with static storage in the linkage segment, and global 
vector in a grown segmento The compiler is expected to 
run under MULTICS shortly. (The GECOS BCPL compiler is 
itself not pure procedure, although the EPLBSA it produces 
is, of course, pure procedure; the MULTICS BCPL compiler 
is pure procedure. Note that there is no BCPL compiler 
under 6.36). 

Language 

The language accepted by the compiler consists of BCPL 
as described in reference (1) plus extensions as described 
in MSPM BZ.6.01. The most important extensions are: 

(1) A full complement of single-precision floating 
point operations. 

(2) String constants differentiated from character 
constants. This makes it possible to write a 
single-character string constant directly. 

(3) Left-hand-side functions. 

(4) Argument count available to calleeo 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.6.00 PAGE 2 

Characteristics of BCPL Code Generators for MULTIC~ 

(1) BCPL will handl~ full addresses. In BCPL an address will 
be packed into one word thus: 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

0 1718 35 

segment# increment 

The command 

x := lv y 

will create such an address. The sequence 

x := Fct 

y : = x (A_. B) 

which is equivalent to 

y : = F ct (A _. B ) 

can refer to a BCPL function in any segment. Similarly~ 
indirection (e.g ... rv(rv A)) can cross segment boundaries. 

BCPL uses an abbreviated stack header and calling sequence. 
The header for a BCPL stack frame requires 8 words. The 
calling sequence is 4 instructions long. Save and rE!turn 
total 12 instructions (6 inline). 

Any BCPL routine can be called by name* from EPL or any 
language using the standard MULTICS conventions for 
argument lists and call-save-return. 

BCPL can call EPL through the library routine ('call') and 
later using the new reserved word call. 

Any sequence of calls between BCPL and EPL routines_. 
including mutual recursion_. is permitted. 

BCPL compiles pure procedure. 

Argument list conversion in BCPL-EPL or EPL-BCPL calls is 
address conversion. Thus_. only single-word values can be 
passed directly. However_. code can be written in BCPL to 
access or create EPL-compatible dope for any type of 
argument_. if neCE!SSary. A library routine exists for 
string conversion. 

* Initially a dummy name_. e.g ... "PR01_." ''PR02_." etc ... is being 
used in place of the source-language procedure name. 



,., 

,, 

MULTICS SYSTEM-f1ROGRAMMERS"' MANUt\L. SECTION BZ.6.00 PAGE 3, 

(8) BCPL. procedure segments which reference glob~l informcition 
haw:; to be initialized prior to execution. However., 
addi ti.ens may be made to BCPL later which wi 11 make the 
use of qJ oba l dee la rat ions unnecessary. 

(9) Any BCPL se9ment not communicating with other· sesJments 
through 9.1.Q!J.El can be executed without pr-ior 
initialization. All static storage is initiillizcd on 
first reference to the procedure segment. 

(10) BCPL segments may be bound, since BCPL uses EPLBSA and 
conforms to MULTICS standards in i.ts use of the linkage 
segment. 

Implementation 

The BC PL-MULTICS compiler consists of the BCPL-GECOS C'Jmpi ler­
implemented at BTL., with extensive changes to the cod,:; 
generation routines. Thus the output code is essentially 
a transliteration from 635 code~ Since the BCPL-GECOS 
compiler has been well tested, the MULTICS version of 
the compiler is expected to be fairly bug-free. 

A more detailed descdption of the generated code is contained 
in MSPM BZ.6.04. 

Execution of BCPL Programs 

BCPL-produced TEXT and LINK may be executed under 6.36 
or under MULTICS. However, the 1 ibrary routines cannot 
run under 6.36. In particular, the routines used to cal 1 
EPL procedures from BCPL will execute only under MULTL:s. 

BC PL-to-BC PL ca 11 s do not conform to the MULTICS s tandar.d 
calling sequence. However, BCPL is fully MULTICS compatible 
in that EPL procedures are callable from BCPL (using the 
BCPL library routines 'Getadr"' and 'Call'), and EPL-to­
BCPL-to-EPL calling chains, including recursion, are handled 
correctly. Conditions arising during BCPL execution can 
be caught and handled by EPL procedures containing the 
proper ON-condition statements. 

Further details are contained in MSPM sections BZ.6.02, 
.04, and .05. 

Reference 

1. M. Richards, The BCPL Reference Manual, Multics 
Repository Document M0099, 15 May 1968. 


