
MULTitS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.9.05 PAGE 1

Published: 01/06/67

Identification

Procedures to add and delete options
addopt, delete_opt
C. Marceau

Purpose

The purpose of addopt is to set a previously unset option.
Delete_opt deletes an option.

Addopt and delete_opt are not normally called by the user.
To set options, use the option command or the procedures
modopt and modset. To delete options, use the delopt
command. Addopt and delete_opt are more limited in scope
than the above commands and procedures, and are designed
primarily as utility routines for those commands and procedures
to use. '

The option and delopt commands are described in BX. 12.01.
Modset and modopt are described in BY.9.03.

Usage

call addopt (name, n, switch, spec)

name - name of the option to be set. Name must be previously
unset.

n - frame number in which name should be set. If n=O,
name is set in the current frame.

switch = "O"b if name should be set off,
= 11 i 11 b if name should be set on.

spec - the specification for the option.

The calling procedure should include the following declarations:

where

dcl name char (K),
n fixed,
switch bit (1),
spec char (L) var;

O<K<64 and

If name is already set when addopt ls called, addopt signals
an error:

signal condition (options_501);

and does not set nsm~.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.9.05

The calling sequence for delete_opt is

call delete_opt (name) .

PAGE 2

where name is the name of the option to be deleted. The
calling procedure should contain the following declaration:

dcl nam~ char (K);

where K is the number of characters in~ (0 < K ~ 64).

If name is not set, delete_opt signals condition (options_502).

Imolementation

Addopt allocates a header for .D.fil!]g_ in the options stack.
If n=1, a header is created also in the permanent options
1 ist. '

allocate header in (ptr-option_seg.space) set (headerp);

(Option_seg can refer· to either the options stack or the
permanent options list-- see BX.12.01).

The hash table of the options stack is initially created
with length 30, so that it can accommodate 20 options
(the ratio of non-vacant entries to length of a hash table
should not exceed 2/3). If addopt is called when 20 options
are already set, addopt must expand the hash table. The
hash table is allocated in option_seg.space and its current
size is given by option_seg.htsize (see BX. 12.01 for a
complete description of the representation of options,
the hash table, and htsize). Addopt allocates a new hash
table with length 2 x htsize. It then rehashes the option
names and copies pointers from the old hash table into
the new hash table.- Finally it resets htsize, changes
the hash table pointer to point to the new hash table,
and frees the storage allocated to the old hash table.

It may happen that option_seg.space is unable to accommodate
the allocation, and the allocate statement signals the
area condition. On~, addopt calls area~~redef (an
EPL procedure) to double· the size of option_seg.space.

Delete_opt frees the storage in which the header and all
settings of the option are stored. Delete_opt deletes
the relative pointer to the header from the hash table
(or sets a deletion bit - see BX.12.01).

MULTIC~ SYSTEM-PROGRAMMERS' MANUAL SECTION BY.9.05 P.Ci.GE 3

When delopt deletes an option, it checks to see whether
option_seg.space is larger than necessary: i.e. whether

nwords < sp;ce _ M,

where nwords = number of allocated words in option_seg.space
and space= total number of words in option_seg.space.
Mis some constant not yet determined, which allows for
further allocation in option_seg.space.

\rJhen option_seg.space must be contracted, delete_opt cal ls
area_$redef to halve option_seg.space.

ltJhen the number of options which are set falls below ht;ize _ 5 ,
and htsize ~ 60, delete_opt halves the hash table. To
do this it creates a new hash table, just as addopt does
to expand the hash table.

