
,. 

,.. 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTIONBY.5.01 PAGE1 

Published: 10/27 /f.7 

Identification 

Routines to create and destroy working processes 
create_wp, destroy_wp. 
P. Be 1 mont 

Purpose 

The routines create_wp and destroy_wp are used to create 
and destroy working processeso These procedures operate 
in ring 1 and are called only from ring 1 by the overseer 
procedure. In later versions of MULTICS, create_wp and 
destroy_wp will be extended to permit user ring procedures 
in working processes to call them. This will permit the 
implementation of parallel processing in user computations. 

Summary 

As we wi 11 see in greater detai 1 belo\rJ., the creation and 
use of a working process involves four main steps: 

(a) creating a new process (read about process 
creation in BJ.2.01 ), 

(b) creating an entry for the new process in the 
working process table, thus making a "working 
process" of the new process ( read about the 
overseer in ·the sections of BQ.3), 

(c) waiting until the new process is ready to accept 
an instruction to do some work, 

( d) using a "gi ve_ca 11" to cause the new process to 
execute a call of the form: 

call subr (arg1, ••. ,argn) 

(read about interprocess communication in B;).6., 
about give_cal ls in BO .Ei.08). 

The destruction of a working process involves: 

(a') destroying the process., 

(b') updating the working process table. 

A call to create_wp accomplishes steps (a) and (b). A 
cal 1 to destrov_wp accomplishes steps (a') and (b'). 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY .5.01 PAGE 2 

Discussion 

A user process group consists of a number of processes 
working toijether to accomplish a task for the user. The 
processes 1n a user process group are of two kinds: working 
processes, which execute the users' commands and procedures, 
and the overseer process, which oversees the working processes 
(see BO .3.00). The overseer in each process group maintains 
a variable length table, the working process table, which 
contains all the information that the overseer requires 
about the working processes in the group. When a working 
process is either created or destroyed, appropriate changes 
must be made in the working process table. -

Create_wp and destroy_wp make it possible for the overseer 
procedure to create and destroy working processes in a 
manner consistent with system requirements concernin~ 
the working process table. -

Let us now give a concise functional description of crcate_wp. 
The function of create_wp is to create a working process 
which will initialize itself, set itself up to receive 
give_calls, signal this readiness by setting an event 
in the creating process, and then wait for a sequence 
of give_cal ls in its wai t_coordinator (see BQ .F.Qf.). 

Create_wp creates a new process by calling create_proc. 

The procedure create_proc (see BJ.2.01 ), executin~ in 
the creating process, creates and begins the init1~lization 
of the new process, schedules the new process and then 
returns, returning the process_id of the riew process. 
The seconc;i part of the initialization occurs in the new. 
process; the last step of the initializlnq procedure is 
to call a procedure specified by the caller of creatc_proc. 
Create_wp specifies the procedure 11 start_wp11 , a standard 
procedure which makes the new process ready to receive 

· give_calls and then signals this readiness to the creating 
process. After crcate_wp returns and the new process 
has signaled readiness, the creating process may use 11 give_cal1 1' 

to instruct the new process to do the user's work. 

Let us explain the preceding line somewhat by giving a 
brief discussion of the give_call facility, (see BQ.G.08), 
an extension of the MULTICS interprocess communication 
machinery. By means of a ca 11 to gi ve_ca 11, a procedure 
in one process can ask another process to execute a call 
of the form: 

call 11 ascii_procedure_name" (arg1, arg?, .•. ,argn). 



MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION Bv .5.n1 

By means of calls to pass_call, any procedure in the second 
process can execute any give calls which have been sent 
to its process from other processes. One would not like 
to initiate parallel processin9without some means of 
kncwing when the task running in parallel had finished, 
and the cal ling s-=quence to give_cal 1 includes an event 
channel on which the originating process is to be notified 
of the return of the give_call 'd procedure. 

The procedure "start_wp" is programmed so that after initializing 
itself and signalling to its creating process, it waits 
for a give_cal l and executes any give_cal l 'd pr~cedure 
it receives. If th is procedure returns, 11 start_wp11 (see 
the implementation section) again waits for a give_call. 
And so on. An arbitrary number of give_calls can thus 
be directed to the new process, which wi 11 execute them 
in the order received; of course, the use of multiple 
give_calls makes sense only if each (except perhaps the 
last) of the give_call'd procedures returns. 

Usage 

A. Create wp 

A call to create_wp takes the form: 

call create_\l'IIP (process_name, process_id, 
event_channel_name, status); 

dcl process_name char (32), process_id bit _(36), 
event_channel_name bit (70), status fixed bin (17); 

The user specifies a process name and create_wp returns 
the process_id, event_channel_name and the status. The 
new process wi 11 signal an event on the specified event 
channel when it is ready to receive give_calls. 

B. Destroy wp 

A call to destroy_wp takes the form: 

call destroy_wp (process_id, status); 

dcl process_id bit (36), status fixed bin (17); 

Destroy_wp searches the working process table for an entry 
corresponding to 'process_id'. If it finds such an entry, 
it destroys the process and updates the workin~ process 
table. If it finds no entry corresponding to proccss_id' 
it indicates an error by means of the 'status' return 
argument. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY .5 .01 

Implementation 

Create_wp: 

PAGE 4 

(a) creates an event channel on which the new process wi 11 
signal readiness for give_calls; 

(b) allocates space for a new entry in the working process 
table and fills in all its items except the process_id; 
the II i_am_qui t tab le11 event channe 1 is created and its 
name stored; 

(c) creates a model process initialization table in its own 
process directory for the new process (the process 
initialization table will be copied into the process 
directory of the new process when that has been created); 

(d) calls create_proc to create the new process; 

(e) records the process_id of the new process in the new 
entry. threads this entry into the working process table. 
deletes the model process initialization table from its 
own process directory. and returnso 

Destroy_wp: 

(a) looks in the working process table for an entry 
corresponding to 'process_id'; 

(b) (if no such entry is found): sets an 11 error11 status. 
and returns. 

(b) (if an entry is found): quits (see NOTE below) and 
destroys the process. destroys the II i_am_qui ttable11 

event channel. unthreads and frees the entry in the 
working process table. and returns. 

NOTE: To quit a working process. set its quit_pending flag 
and test its quit_inhibit_counter (roughly. a count 
of locks set on important ring 1 data). If this 
counter is non zero. wait for an event on its 
associated i_am_quittable event channel. Then set 
its wakeup inhibit flag in the event channel table 
(BQ.6.04) and call quit_process. 1\- The quit_pcnding 
flag. quit_inhibit_counter. and i_am_quittable event 
channel are in the process' entry in the working · 
process table. 

* Quit_process calls quit (BJ.3.03) but doesn't return until 
the process is actually quit - implying. for example, that 
it is out of ring o. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.5.O1 PAGE 5 

S tart_wp. 

The process initialization machinery in create_proc does, 
among other things, initialize the give_call/pass_call 
facility, by the establishment of the requisite data structures 
and event channels. The procedure "start_wp" which is 
executed following initialization: 

(a) looks up (in the process group's give_call table) 
the name of the event channel which is to be used 
by external give_calls; 

(b) declares this event channel to be a call type event 
channel, specifying"pass_call" as the procedure 
to be ca 1 1 ed; 

(c) gives a ready signal to the creatin~ process on an 
event channel named in the process 1nitialization 
table (see step c of create_wp); 

( d) ca 1 1 s wa i t . 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY .5.01 PAGE 6 

> 

FIGURE 1 
Usage of create wp and destroy wp. Empty boxes below indicate activity 
unrelated to the creation, use-:- and destruction of the parallel process. 

call 
create_wp 

wait for readine s 
of new process 

to receive give 
calls 

call give_ call 
re: SUBRl 

(arglistl) 

,~ 

,~ 
wait for return 

of SUBRl 

call give_ .. call re: , SUBR2 
/ ,:,rol · at-?\ 

~ ~ 

, I 

wait for return 
of SUBR2 

tall give ca 1 
1-- ~re:SUBRN -
I (arglistN) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

wait for return 
of SUBRN 

call destroy_wp 
.. 

""' 


