
MULTICS SYSTEM-PROGRAMMERS' MAN~L SECTION BY.22.O2 PAGE 1

Published: 11/26/69

Identification

LSM Utility Procedure
lsut
Edwin W. Meyer, Jr.

Purpos~

.1§.yl comprises a number of entries intended for use in
creating, manipulating, and interrogating the LSM-format
list structure described in MSPM section BY.22.O1.

Functions

Detailed calling.sequences for the entries provided in
lsut are presented in MSPM Section BS.22.O9. An enumeration
o"fthe types of functions available and their logical
calling sequences is presented below. Note that the actual
calling sequences and entry names are somewhat different.

node= make_fix (fixed_number);

make fix creates a single element fixed
array data block containing 'fixed_number'
and returns the.'node' address of the block.

fixed_number = get_fix (node);

get_fix returns the value of the zeroth
element of the fixed array block at 'node'.

node= make_bit (bit_string);

node= make_~har (character_string);

make bit/make char creates a bit/character
string data block containing the supplied
string and returns the 'node' of the block.

bit_string = get_bit (node);

character_string = get_char(node);

get bit/get_char returns the value of the
bit7character string data block at 'node'.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.22.02 PAGE 2

array_node = rnake_array (node_o. node_, ••••• node_n);

rnake_array creates a node array data block of
n + 1 elements containing the supplied nodes
and returns the 'array_node' of the created
block.

node= get_array (array_node. array_index);

get_array returns the 'array index'th node of
the node array data block at--....array_node'.
(The lower bound of 'array_index' is zero.)

call set_array (array_node. array_index. node);

set_array inserts 'node' into the 'array_index'th
element of the node array data block at
'array_node '.

char_node = concat (char_node_a{ char_node_b.
char _node_n J;

concat creates a character string block
containing the concatenation of the

• • • •

values of the supplied character strin~
block nodes and returns the 'char node of
the created block. -

truth_value = equal (node_a, node_b);

equal compares the data block nodes 'node a'
and 'node b' for equivalency. Nodes are -
equivalent if they are of the same data type:
fixed. bit. or character. and contain identical
data. Node array type nodes are equivalent if
they are of the same length and contain
equivalent nodes in each of the array elements.
Null nodes or indirect type nodes or hash 1 ist type
of the same length are equivalent by definition.

truth_value = greater (char_node_a. char_node_b);

greater compares the character string data
blocks 'char node a' and 'char node b'. 'truth value'
is returned as T Tf 'char node-a' is greater in-the
ascii collating sequence than ~char_node_b';
otherwise F is returned.

MULTICS SYSTEM-PROGRAMMERS' MANI.Jl\L SECTION BY.22.O2 PAGE 3

parsed_node = parse (character_string);

!his function parses 'character_string'
into character string tokens delimited
by one or more blank/new line characters.
Leading and trailing blank/new line
characters are ignored. Character string
blocks containing these tokens are created
and their nodes are inserted into the
elements of a created node array in the
order in which the tokens were
found in the left-to-right scan of
'character_string'. The array is of the
minimum size sufficient to contain all the
tokens -- there are no unused elements. For
the double quote token, a null node is
inserted into the proper element of the node
array, rather than there being a character
string block created for it. The node of the
created node array is returned is 'parsed_node'.

call print (node_a, node_b, ••• , node_n);

This function prints the character string
equivalents of the supplied data blocks
on-line without any seperation. Only
fixed, bit string, or character string
data blocks are printed; other types are
i~nored. Only the zeroth element of a
fixed array block is printed.

call print_columns (fixed_width(_node_a, node_b,
••• , node_nJ;

This function is similar to the 'print'
function except that the values of the
data blocks are printed in columns of
'fixed width' characters. Short strings
have added blanks to fill out the column,
and long strings are truncated to fit the
column.

call print_data~block (node);

A complete description of any type data
block is printed on-line, including its
type and length and character string
equivalents of all items.

MULTICS SYSTEM-PROGRAr+,ERS' ~NUAL SECTION BY.22.02 PAGE 4

Examples

The following examples are desi9ned to illustrate the
usage of these functions in manipulating list structure
data blocks. Note that the PL/I programs illustrated
below are incomplete, lacking declarations.

The first example involves a set of three-element node
array data blocks which are currently unlinked. It is
desired to link them in a threaded list of four-element
array blocks. The zeroth element of each block is to
contain the node of the next block, and the remaining
elements are to contain the three nodes of the original
block. This threaded list is terminated by a null (0)
node in the zeroth element of a block. The function outlined
below takes a three-element array and places the four-element
equivalent at the head of a supplied threaded list of
such blocks~

new_list_top = convert_insert (old_block. list_top);

convert_insert: proc (old_block, list_top.
new_ 1 ist_top);

new_list_top = make array (list_top, get_array
(old_block, O)< get_array (old_block, 1), get_array
(old_block, 2)J;

end convert_insert;

The second example involves the threaded list described
above; it is desired to delete a certain block specified
by node from the list. The following recursive function
does that.

new_list_top = delete_block (list_top, del_block);

delete_block: proc (list_top, del_block,
new_ 1 ist_top) J

if list_top = 0 /*null*/ then new_list_top = O;

·else if equal (list_top. del_block) then
new_list_top = get_array (list_top. O);

else do;

call set_array (list_top, o, delete_block
(get_arrc:1y (list_top. 0) del_block));
new_list top= list top•
end; - - '

end delete block•
- #

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BY.22.O2 PAGE 5

The third example presumes that element 1 of the previously
described 4-element block is a character string key by
which the threaded list is alphabetically ordered. The
following recursive function inserts a new block into
the proper position in the threaded list.

new_list_top = insert_block (list_top. block);

insert_block: proc (list_top. block.
new_l ist_top);

if list_top = 0 then do; /*insert new block at
end of 1 ist*/

new_list_top = block;
call set_array (block. o. O); /*insert null thread*/
end;

~lse if greater (get_array (list_top. 1). get_array
(block. f)) then do; /*insert it here*/
call set_array (block. o. list_top);
new_list_top = block;
end;

else do;
call set array (list top. o. insert_block (get_array
(list_top. o). block));
new_list_top = list_top;
end;

end insert_block;

