v,

MJLTICS SYSTEM-PROGRAMMERS ©~ MANUAL - SECTION Bv,22.01 PAGE 1
Published: 07/0¢/RQ

Tdentification

List Structure Manipulator (LSM)
tdwin W, Meyer, Jr.

PUrpose

The 1ist structure manipulator is a utility package that
enables a procedure to easily and eff1c1cn*1y create,
reference, and manipulate a data segment containing LSM
standard 11st structure whose nodes consist of list, hash
list, ascii, bit, and binary data types.

Qverview

A1l 1ist structure operations are performed within a working
segment in the process directory. In order to read or

alter a iist structure segment, a procedure first issues

a call to “"pull" into the worklnq segment the structure
hanging ofF the root node of the LSM-type segment., The
address of the root node of this new structure is returned
to the caller, Similarly, in order to write a permanent

LSM segment, a procedure issues a call to "push'" the list
structure hanging off a specified node into the specified
segment and set the root node.

The 7ists of a LSM segment can be moved into the working
segment without overwriting lists previously brought in,
In this manner two or more LSM segments can be coalesced.
On the other hand, the action of writing a list into a
permanen+ LSM segment destroys all data previously in

the segment and sets the root cell of that segment to
point fo the inserted list,

Each procedure that uses the list structure manipulator
can create its own working segment., Thus there is no
danger of unrelated procedures performing conflicting
operatlons on the same work1ng segment,

LSM Data Types

There are six data item types defined in version 1 of
the 1ist structure manipulator. (See Fig., 1) These arc:



MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BY.22.01 PAGL 2 N

1. .indirect - internal to LSM. 1Invisible to user.

2, fixed array - an array of fixed oinary numbers
of precision 35. The limiting case of 1 array
element is used to represent a single number,
The maximum number of array elements allocatable
is currently L0944,

3. bit string - the largest allocatable string is
LOSL*36 bits in length. :

4. character string - Multics standard ascii code.
The largest allocatable string is L0OOL*L
characters in length.

5., node list - an arrav of node addresses, The
maximum number of node elements allccatable is
currently 40ou, '

6., bhash 1ist -~ consists of a node array of bucket
lists., Each bucket is a forward threaded sct
of 3-element node array buckets, Node 0 points _
to the next bucket, Node 1 points to a reference
character string data type and node 2 is a “\
related node, '

Data items are allocated in contiquous blocks of storage
within a segment., The first word for all data item types

is a specifier; the actual data follows in succeeding
worgs, -

A specifier word has the following format:

bits C-5 "type! type code - determines data item type

bits €-17 "allo" = allocated block length - contains the
number of words in this block (including
specifier)

bits 18-35 "curl" current data length - in units relevant
Co to data type ‘

A node address is a single word item with the following format:

bits 0-17 - =0 - reserVed for process-independent
: segment index

“bits 18-35 offset address within the LSM segment

0 is defined as the null address.



MULTI

CS SYSTEM-PROGRAMMERS © MANUAL SECTION BY,22.01 PAGE

ISM Data Sedment Format

The first three words of an LSM data segment are reserved.
as follows (see also Fig. 3):

word O "vers:.on'
=1 - version number of the LSM which created
the scgment

word 1 " free!
offset address of the first word of the free
block, (The free block is a contiquous block
of words lving between the allocatéd part of
the data segment and its upper bound,) Its
initial value is 3,

worc 2 ' "root"
contains a node address pointing to the root
node of the list structure

words 3 to This section is divided into two parts: ke

chk-1 allocated portion and the free block, Initially

the free block totally occupies this section,
but as new data blocks are created, the
necessary number of words are snicped off the
jow address end of the free block and aliocated
to the data blocks.

LSM Procedure Calls

call

Tsmidinit (pr);
dcl pr ptr;

If a null pointer is supplied, Ismldinit finds or makes.
an empty work1ng Tsm segment in *h@ _process d'“hc+ory
and returns its base pointer in “pr~° T “pr” is not
null, Ismldinit assumes it to be a base pointer to a

‘working segment to be truncated and re-initialized,

Z

i~



MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BY,.22.01 PAGE L N

call 1smi§free (pr);

The segment pointed to by “pr~” is truncated to zero and

added to the free working segment list for later re-use,
This call should be made whenever an 1sm working segment
is about to be abanioned in order to prevent the buildup
of many blocks of carbage in secondary storage, A null

pointer is returned in “pr-,

call 1smidgc (pr, count, active_node);
dc1 count fixed bin (17),
active_node fixed bin (34);

If more than “count” - 3 words have been allocated to
data items in the working segment (base pointer “pr”),
then it will be garbage-collected. This is done by
transferring all of the iist structure inferior to
“active_node” to a new working segment, Only items
traceable from “active_node” get transferred. The base
pointer to the new segment is returned in “pr” and the
node equivalent to “active_node” in the new segment is
returned, ' ’

call 1smidpull (pr, dir_path, entry, root_node);
dctl dir_path char(¥*),
entry char(s),
root_node fixed bin (34);

A copy of the 1list structure contained in “dir_path” >»entry”
is moved into the working segment, and the address of the
root_node of the working copy of the moved lists is

returned in “root_node.” If there is any error such that

the 1ist structure can not be pulled in, “root_node” is
returned as -1. _ '

call 1smigoush (pr, dir_path, entry, root_node);

A copy of the list structure inferior to “root_node” in
the working segment is "pushed' into the segment
“dir_path”“>%entry” and its root node cell is set to point
to the homolog of “root_node.” Any previous contents of

" the segment are. overwritten, If the list structure can
not be moved for any reason, “root_node” is returned as
-1. The original list structure inferior to “root_node”
is destroved,



MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BRY.22.01 PAGE 5

caT1

call

call

1sm1jget;b1k.(pr, node, type, curl, bpr);

dc1 node fixed bin (34), /¥*address to data item*/
type fixed bin (17),/*data type>*/

curl fixed bin (17),/*current Tength/

bpr ptr; /*pointer to start of data¥*/

The data block at address “node” in the working
segment (base pointer is “pr”) is investigated
and its “type, " “curl,” and “bpr” to the first
word of the data are returned. If “node” is not
valid, “type” is returned as O,

Tsmidmake_blk (pr, node, type, curl, bpr);

A new data block is created in the working segment

of type “type, ” current length “curl,” and the
minimum allocated length sufficient to encompass

the current length. The node address of the created
data block is returned in “node” and a pointer to

the first word of the data area is returned in “bpr.~
If a new block can not be created, “node” is returnec
as =1,

‘1smighash (pr; node, op_code, keyp, kéy?, s_node, r_node);

dcl op_code fixed bin(17), /Y*operation and key type code*/

keyp ptr, /*pointer to base of key character string¥/

keyl fixed bin(17), /¥ character length of key/

s_node fixed bin(34), /*node of key string supplied or
returned

r_node fixed bin(34), /*related node associated with

' key string - supplied or returneds/

This call checks the hash 1ist at “node” in the working
segment for the existence of the key character string
defined by “keyp‘ and “key1” or “s_node” (depending on
“op_code”) and adds, deletes, reads, or writes the
key-string and its related node,



MJLTICS SYSTEM-PROGRAMMERS © MANUAL

SECTION BY.22.01 PAGE 6

op_code

key defined by:

operation

if key found

if key not found

keyp, kevyl ' s_node
0 L reads into “r_node” = -1
*s_node” and
“r_node”
1 5 same as above adds key to
' list - returns
“s_node” and
“r_node” = 0
2 & writes “r_rode” adds key to
into related Jist - writes
node cell - ‘r_node” -
returns “s_node” returns “s_node”
3 7 deletes key and returns
related node “r_node” =-1
from hash 1list

«

et



MULTICS SYSTEM~-PROGRAMMERS © MANUAL

indirect

fixed
array

bit or
character
string

node
array

hash
list

L

(]
m

SECTION RY,22.01 ~A

Figure 1.

11 21 1 i<4—specifier
node addr |- :
T2 Tl «—specifier
fix 0 :
=F¢é 1
T Tixn
x] B €&—specifier
S x = 3 -~ bit string
Ay, X = L4 - char string
51 1 ntl | €—specifier
: noce 0
i node 1 s
| AL
node n
Bl ] n:l] €—specifier
bucket 0 1| =0 if no inferior 1list
bucket 1 =t :
) 15“"?’ 51 4l 3 node of next
B <-bucket or O
bucket n node of key
‘ string

<related node

next_bucket
string_node
related_node

LSM Data Types



MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BY.22.01 PAGE 8

W — (O

BLK

!D 516* .17}18 -3%
! - . SPECIFIER
= 7 - @ |
nty'pen “8]10_" " U!"‘"
data allocated current length
type length of of data within

data block block

o___ . ' 35
| Sl 'I NODE ADDRESS CELL
reserved oféztt of beginning
for of data block with
segment respect to start of
index segment

Figure 2. Specifier and Node Address Formats

T —version number of creator LSM (=1)

¢-—index to first word of free block (init3)

<—node address of root of list structure

N

o\ '\ allocated block containing data items

w free block

Figure 3., LSM Data Segment Structure



