
r

,..

TO:
FROM:
SUBJECT:
DATE:

MSPM Distribution
K. J. Martin
BY .2. 11
06/20/68

The write-up of working_segs is being re-issued to reflect
slight changes in error handling.

,

,,

,....

,..

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BY.2.11 PAGE i

Published: 06/20/68
(Supersedes: BY.2.11, 05/28/68)

Identification

working_segs
£. W. Meyer, Jr., S. Lo Rosenbaum

Purpose

There are several types of programs, notably translators,
which need to create and manipulate temporary se~ments
in the process directory and to later move them into another
directory. "workin~_segs" is designed to al low the command
writer to do this with a minimum amount of coding effort.

Discussion

Two entries exist within working_segs: $init and $finish.
$init creates the desired segments in the process directory,
and $finish moves them into the target directory. Prior
to calling working_segs$init, an array (each element of
which constitutes information for one segment) must be
filled in with the name suffix and maximum length of each
segment to be created. working_segs$init creates each
segment in the process directory with the indicated maximum
·1ength and an entry consisting of the concatenation of
a common unique character string with the supplied name
suffix, and places a pointer to each segment ln the proper
position of the corresponding array element. It sets
the copy and relate switches. off and enables the modes
11 read", "write'', and "append'' •

Prior to the call to working segs$finish each element
of the array must be filled Tn with the permanent settings
of the bit count, maximum length, attributes, and modes.
$finish moves the segments to the speciied directory,
replacing the unique character string first component
of the name with the specified permanent component, and
deletes the process directory branches. If it cannot
move one segment (see discussion of status below), it
sets the appropriate value for status and continues with
the next segment~ Note that the segment suffixes and ·
the unique name stored in the segment information aggregate
by $lnit must not be altered between the calls to $!nit
and the call to $finish; otherwise, $finish will be unable
to find the segments that it ls to move. Because all
the static information is st,:>red in the suppl led structure,
working_segs can operate on several sets of segments
simultaneously (i.e •• asynchronous calls to $init and
$finish are al l01Ned).

·· MULTICS' SYSTEM-PROGRAMMERS' MANUAL SECTION BY .2. 11 PAGE 2

Yssae
call working_seg~$init (segs);

ca 11 working_segs$f in i. sh (segs., ta rget_di r., perm_name)

dcl target_dir char(*).,

·perm_name char(*);

de 1 1 segs.,

,. 2 uname ctiar (15)., · ·

·2 array(*).,

3 status fixed bin (17).,

3 replace bit (1).,

3 base_ptr ptr.,

3 vacant bit (1).,

3 max_length fixed bin (9).,

3 bit_count fixed bin (24).,

3 trewa char (5).,

3 copy _re late bit (2).,

3 count fixed bin (17).,

3 suffix char (32);

/*target directory
pathname*/

/*permanent name prefix
to replace unique string
in the target directory
branches*/

uname - unique character string created by $init.

status -. indicates the success of creating (or moving)
this segment. segs.array(j).status takes one of the fol lowing
values upon retur~ from $finish. ·· ·

'
=0 entry (j) successfully created (or moved)

=1 entry of same name as the segment to be moved currently
exists in the target directory and the value of replace
(see below) directed that $finish should not attempt to
replace the segment by the working segment.

,
MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BY.2.11 PAGE 3

=other - File system error code. The basic file system
could not create the working segment (or could not move it
to the target directory). The user can cal 1 check_fs_errcode
(section BY .2.02) to determine precisely what error occurred.

replace - indicates the action to be taken if the cu.rrent
entry (perm_name II suffix) already exists. If replace= 11 011 .b;
working_segs returns segs.array(j).status =1. If replace="1".,b,
working_segs attempts to truncate the segment and replace
it by the working segment. (Note: The write attribute
must be·on for a segment in order to truncate it).

base_ptr - pointer to created segment - filled in by
working_segs$init.

vacant - If "1"b, $init ignores this array element; $finish
tries to delete the working segment from the process directory

.if it exists, (i.e., the switch was "O"b in the call to
$!nit).

max_length - maximum length of created segment in units
of 1024 words - required by $init and $finish (need not
be the same va 1 ue for both ca 11 s).

bit_count - length of the segment in bits-required by
$finish to set the bit count in the target directory branch.

trewa - specifies final settings of the access modes for
this user. If the "append" mode is to be set off, the
maximum length for this segment will be set to the minimum
needed to completely encompass the current length; otherwise
max_length specifies its value. If trewa is null, a default

, is taken depending on whether or not the branch al ready
exists•: if it exists, its current mode is used; if it
does not already exist, read, write and append modes are
used.

copy relate - specifies final settings for the copy and relate
switches, respectively. Note: if a branch of the same
name exists in the target directory and if all modes are
of.f, i.e., trewa equals five spaces, then the currently
existing mode and switch settings wi 11 be used, i.e • .,
the settings for copy_relate will not be used - required
by $finish.

count - number of characters in supplied name suffix -
required by $finish.

suffix - entry name suffix, 32 characters in length or
less. The user must supply the 11 • 11 in the string if it
is a component suffix. The length must be stored in
"count" - required by $ini t and $finish.

MULTICS SYSTEM-PROGRAMMERS' MC\NUAL SECTION BY.2.11 PAGE 4

Implementation

working_segs$init takes the following action for each
array element:

1. If seg·s.array(j).vacant="1 11 b this element is ignored.

2. smm$set_name_status is called to create the segment of
maximum length= 1024 * segs.array(j).max length and
return its base pointer. -

working_segs$finish does the following for each array element:

1. If segs .array (j). vacant=" 111 b, then ca 11 smm$terminate to
get rid of the temporary segment in the process di rectory.
Go to the next array element.

2. Otherwise, call move_file_ to move the segment from the
process di rectory to the target di rectory. · If the segment
cannot be moved, working_segs checks for one of the following
error codes:

a.

b.

No entry exists in the target di rectory O Retrieve the
final mode and switch settings from segs.array(j).trewa

·and segs.array(j).copy_relate. Call append_branch to
create a zero length segment with proper mode, switch
settings and maximum length. Try to move the segment
again.

A non-zero length entry exists in the target directory.
If segs.array(J).replace=11 0"b then set segs.array(j).
status=2 and. go to next array element. If segs.array
(j).trewa equals the null string then call entry_status
$switches to retrieve current mode and switch settings.
Ca 11 truncate_seg to reduce the current segment to ·
zero-length. Try to move the segment again.

3. If the segment is not successfully moved, set segs.array(j).
status to the file system error code returned by move_file
and go to next array element.

4. When the segment has been successfully moved, call
set count$bits to set the branch's bit count. If entry
previously existed, call set_max_length to set the ,
branch's maximum length; call set_copy to set the branch s
copy switch.; call set_relate to set the branch's relate
switch; ca 11 mode$set to set the branch's access modes for
the current user. Ca 11 smrn$set_de l_sw and smm$terminate
to delete the working segment from the process directory.

