
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.2.06 PAGE 1

Published: 10/21/68
(Supersedes: BY .2. 04, 11/10/67;

BY.2.04, 04/03/67)

Identification

The equals convention
equalcomp, compcount, chop
R. J. Feiertag, C. Garman

Purpose

This routine provides a shorthand method of representing
the latter of a pair of entry names, when many of their
components are identical. A utility procedure (with the
two names compcount and chop) is provided which can count
the number of components in an entry name or place the
components in elements of an array or do both.

Definition

The "=" is a character having a special meaning to some
file system commands. In a pair of arguments the strings
11 =11 or 11 ==11 may appear as components in the second argument
with the following special meanings.

11 =11 - This component is replaced by the corresponding
component in the previous argument. If there is no
corresponding component (i.e., the second argument has
more components than the first) then this component in
the second argument is eliminated.

''==" - This string may only appear as the last component
in an entry name. If it appears as other than the last
component the remainder of the name is ignored. The "=="
component is replaced by the corresponding component and
all components to its right in the first argument. If
the corresponding component does not exist then this
component is eliminated.

Usage

call equalcomp (name, mask, newname);

dcl (name, mask, newname) char(33); /*or char(33) var*/

~ - entry name from which components are to be copied,
described as first argument above.

mask - entry name containing "=" and "==" as components,
described as second argument above.

newname - entry name created by replacing "='' and "==" by
corresponding components.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Examples

name

fred.george

f red .george

fred

f red. geo rge

f red .george

fred.george.abe

fred.george.abe

f red. geo rge. abe

mask

a 1 f red. i saac

a 1 f red.=

alfred.=

=.=

=

a 1 f red.==. isaac

SECTION BY.2.O6 PAGE 2

newname

a 1 f red. i saac

alfred.george

a 1 f red

fred.george

fred

fred.george.abe

alfred.george.abe

alfred.george.abe

Note that in the last case II isaac" was ignored because it
appeared after "==".

Implementation

A check is first made to see if there are any"=" or"=="
components in~- If there aren't any, newname is returned
equal to mask. The components in name and mask are then
put into arrays by calls to countcomp$both.~test is
then made on each component. If a component of the array
of ~ is an "=' 1 then it is replaced by the corresponding
component in the array of~- If the component in the
array of~ is a"==" then the remaining components
in the array of mask are replaced by the remaining components
in the array of~- The array of~ is then concatenated
to form newname.

Usage

call compcount (name, count);

dcl name char(*),

count fixed bin(17);

/.,':entry name whose com­
ponents are to be
counted*/

/*count returned by
component*/

The number of components in name is returned as count. The
number of components is the nu'moer of "." 's plus one.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.2.O6 PAGE 3

call chop (name 1 array);

dcl array (*) char (*) varying; /*array into which
components are to
be placed*/

Each component in name is placed in an element of array
in sequence 1 i.e. 1 the ith component of~ in the ith
element of array. The length of array must be larger
than the number of components in name. Any extra elements
in array will remain unchanged.

call compcount$both (name 1 array 1 count);

or

call chop$both (name 1 array 1 count);

Both count and array are filled as described above.

Implementation

~ is converted to a fixed string by a call to
cv_string$cs (BY.1O.O3). If appropriate 1 the string up
to the first 11 ." is placed in array by a call to substr
and a counter 1 initially zero1 is incremented by one.
The operation is then performed on the remainder of the
string until the string is exhausted.

