MULTICS _¢STEM~PRC-CAMMERS” MANUAL SECTION BY.15.02 PAGE 1
Published: 05/03/67

Identification

Time Conversion .
calendar_output, calendar_input
L. B. Ratcliff

Purpose

The calendar_output procedure performs the basic computations
required to convert 1nterna1 calendar clock time to more
conventional external forms involving year, month, day,

etc, calendar_ input computes an internal calerdar clock

time when given a time in parameter form, i,e., vear,

menth, day, etc,

This procedure is based on conventions and techniques
discussed in section BD,10,02,

Discussion

The internal form of a clock time is a signed 71-bit
integer, This time is in microseconds relative to 00CO
hours GMT, January 1, 1901, The equivalent external
form consists of the components:

year (AD) integer from 0001 to 9999
month integer 1 to 12

day of month integer 1 to 31

hour integer 0 to 23

minutes integer 0 to 59

seconds integer 0 to 59
microseconds integer 0 to 999¢39¢

time zone char.string 3 characters

day of week integer 1 to 7 (1 = Sunday)

Output conversion (calenddr _output) produces all these
components; input conversion (calendar_input) reaquires
all but day of week,

While the calendar procedures perform the basic time conversicn
and are available to any user, with their 1engthy argument
1ists they will not be called directly by most users,

The procedures get_calendar and put_calendar are prov1o°d

to call calendar _output or calendar_input and format the



MULTICS SYSTEM~PROGRAMMERS” MANUAL SECTION BY.15.02 PAGE 2

time. (See Section BY,15.03,) It is anticipated that

other special formats, in additicn to those provided by
get_calendar and put_calendar, will be provided by procedures
which call calendar_output, calendar_input, get_calendar

and put_calendar, '

Implementation of calendar_output and time_conversion_table
is planned for Phase 11, Implementation of calendar_input
and time_zone_table is planned for Phase 1V,

Time Conversion Table

Time_conversion_table is an external data base which is

aware only of Eastern Standard Time (EST) and Etastern

Daylight Time (EDT). This data base is subject to modification
by the user who wishes to know or specify times in other

zones, The primary function of time_conversion_table

is to accomodate time changes within a specific time zone,

Each entry in the standard table specifies a time at which

EST or EDT becomes effective, Each table entry contains

three items; the initial version contains the following
entries:

time(i) constant (i) string(i)
30 Apr 1867 0e00 . -5 hours EST
29 0Oct 1967 0600 -l hours EDT
29 Apr 1868 0600 -5 hours EST
28 Qct 1968 0600 -4 hours EDT
2 Jan 10000 0000 -5 hours EST

The time and constant entries are values in microseconds.
Note that the time(i) are the times at which time changes
take place and are in order with earlier times first,

The last entry must contain a time greater than or equal

to 2 Jan 10000 0000 to indicate the end of the table,.

For output conversion, the items time(i) determine the

range in which the specified time occurs, The corresponding
constant (i) expresses the difference between GMT and time

in the zone identified by string(i). If the specified

time is bhetween time(k-1) and time(k), the correspending
conversion values are constant(k) and string(k). For

input conversion, the specified time zone is compared

to the items string(i) to datermine a corresponding constant(i)
required to compute an internal item (GMT)., A detailed
géscgsgéon of the time conversion table appears in Secticn
D.10,02., o



MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BY.15.02 PAGE 3

Time Zone Table

If the specified time zone is not found in time_conversion_table
during input conversion, an auxiliary table, time_zone_table,

is searched. Each entry in time_zone_table consists of

_two items - constant and string. The constant(i) are

values expressing the time difference in hours between

GMT and the zones indicated by the string(i). Standard

entries are:

constant (i) string(i)
-5 EST
-4 EDT
-6 ~ CST
-5 CDT
0 GMT
-8 - PST
-7 PDT
7 MST
-6 MDT
0 <SP> <SP> <SP>

The ordering is from most likely to least likely, Each
user may replace this table with his own version if he
wishes to input time in zones other than his own which
do not appear in the standard time_zone_table, The last
entry must contain the string <SP> <SP> <SP>, The
time_zone_table must not contain more than 50 entries,

Usage: calendar

To obtain the external components of an internal clock time:

call calendar_output (clock,year,month,day,hour,min,
sec,musec, zones,weekday ) ;

To convert external components into an internal clock time:

call calendar_input (clock,year,month,day,hour,min,
sec,musec, zone); :

Arguments are declared as follows:
dcl clock fixed bin (71), zone char (3),

(year,month,day, hour,min, sec,weekday) fixed
. s k4 E . b ' . :. 2
bin (17), musec fixed bin (35);



MULTICSvS”STEM—PROGRAMMERS' MANUAL SECTION BY.15.02 PAGE 4

Implementation

The calendar procedures are aware of the Gregorian calendar
system only, Users who are interested in ancient systems,
reform calendars, or other concurrent calendars will require
a more SODhlSLlCated procedure whose first function will

be to determine the required calendar system and then

to call the appropriate computational procedure, such

as calendar_output, One rather arbitrary check is made

- by calendar_output to ascertain that the computed Gregorian
year is in the range 1 through 9999, If the year is outside
that range then an error condition is signalled, Beyond
that, the calling procedure may establish ths time at

wnlch the Gregorlan calendar is effective, (Pope Gregory’s
calendar was not un1versa11y accepted in 1%82 It was

first used by England in 1752, by several other countries

in 1200, and yet others well 1nto the 20th century,)

The following discussions describe the implementations
of calendar _output and calendar_input, Expressions involve
the PL/I generic function mod (a, b) to express a(modulo b)
and the notation [x] to indicate the integral part of x,

A. calendar_output

Clock time is a 71-bit 1nteger Its value is in microseconds
relative to 0000 January 1, 1901 GMT. The return values
and clock time are declared as fo]]ows

del (year,month,day, hour,min, sec,weekday)
fixed bin (17) musec fixed bin (35),
zone char (3), clock fixed bin (71);

The return values are determined by the following steps:

1. Using clock and time _conversion table, compute time
in the specified time zone. Thg value of clock is
compared with the entries tlmo(l) If time(k) is the
first entry which exceeds clock then

local_time = clockiconstant (k)
zone = string(k)



MULTICS SYSTEM~-PROGRAMMERS” MANUAL SECTION BY.15.02 PARE 5
2. Separate local_tims into an 1ntegra1 number of days
(ndays) and fractional part of a day (rday).
ndays = [local_time/8,64e10]
rday = mod (local_time, 8,64e10)

3, Using rday (the number of microseconds since 0000 of
the day) compute hour, min, sec, and musec.

L, Compute number of days (d111) relative to Monday,
January 1,1 (Gregorian calendar system),.

d111 = ndays + 693960

where 693960 is the number of days from January 1,1 to
January 1, 1901, 1If d111 is negative or exceeds
3652058 (Dec. 31 ,9999) then seterr (BY.11.01) is
called to record the error and condition (calenca._output_
err) is signalled,

5, Determine weekday. Sunday = 1,'Monday =2, etc,

>

weekday = mod (d111+1,7)+1

6. Compute the year and day of the year, If the date is
betwezen January 1, 1901 and February 28,2100 inclusive,
a part of the en:u1ng computation can be bypassead,

Thus if 0 < ndays < 72742 by pretending every year is

a leap year (that Ts, adlustlng ndays to the value,
fake, that it would have if every vear vere a leap
year), the actual year and day_of_year can be found,
Noting that there are 1461 days in four vyears (1nc1ud1no
one leap year), 3 days must bo added to ndavs for

every full b-vear period in ndays, and 1 day must be
added for each additional 365-day year, with an
adjustment (subtracting one day) if the actual day

is December 31 of a leap yvear.



MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BY.15,02 PAGE ©

fake = ndays + 3[ndays/1461]
+ [mod(ndays,1461)/365]
- [mod(ndays, 1461)/1460]

year = [fake/366] + 1901
day_of_year = mod (fake 366)
Go to step 8,

7. Additional calendar adjustments are required to
compute the year if it is outside the range checked
in step 6. Again pretend1ng every year is leap year,
and noting that 400 years of Gregorlan Time contain
146097 days and that 100 year periods ending in a
centesimal year not divisible by LOO contain 36524 days,
the proper ad|ustmonts can be made, Observe that in a
LO0 year period (e.g. 1601 through 2000) 303 years
contain 365 days and that in a 100 year period described
above there are only 24 leap years, Thus it is
necessary to add 3203 days for each L00 year period,
76 days for each additional 100 years, 3 days for
each additional L year period, and 1 day Tor each
additional year with an aoJustment for the last
day of a L0O0 year or L year period., The values
X, Yy and z are computed first to simplify the
comnutatlon

X

it

mod (d111, 146097)

y mod (x, 36524)

I

z mod (y, 1461)

fake dill + 303 [d111/146097 ]
+ 76[x/3652L47] 4+ 3[y/1461]

+ [z/365] - [x/116096] -~ [z/1460]
= [fake/366] + 1

il

year

day_of_year = mod (fake, 366)



MULTICS SVSTEM-PROMRAMMERS © MANUAL SECTION BY.15.02 PAGF

8. Using day_of_year (which is the number of days past
January 1 of the year) compute month and day., First,
set j = 1 if year is a leap year, Set j = “Oif year
is not a leap year. Now, by giving every month 31
davs, month and day can be obtained, Calculate,

b = day_of_year - 59 -]
to determine whether or not month falls beyond February,
IT b is positive make the adjustment

day_of_year = day_of_vear + 3 - | + 2[b/153] +
[mod(b, 153)/61]

This adds 3-j days for February, 2 days for each full
5-month period beyond February and 1 day for each
full 2-month period beyond the last full 5-month
perlod taking advantage of the pattern of numbers
of. days in the months: 31,28/29,
31,30,31,30,31,
31,30,31,30,31,

In any case
month = 1 + [day_of_year/31]
day = 1 + mod (day_of_year,31)
Q. Return,
B, calendar_input
A1l components have been specified except, possibly,
time zone, First, a composite 71-bit ropresenLat1on

of the time T, is created, The following input
arguments are used:

y = year - 1

m = month

d = day

J = 1 1f year is a leap year, 0 if not,



MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTICN BY.15.02 PAGE

The number of davs (ndm) in the m-1 full months is
the value of the mth element of the array (0,31,59,
%0,120,151,181,212,243,273,30L,330L), plus j when
m>2. Then the total number of days is:

ndays = 365y + [y/4] - [y/1007 + [y/k00]
+ ndm + (d=1) - 693960

where 693960 is the number of days from Jan, 1,1
to Jan. 1,1901,

T = (((ndays*2u+hour)*60+mig}*60+sec)*106mu5ec

The final step from the composite time, T to an internal
time (GMT) involves subtraction of the constant for the
specified time zone from T. However, the following problems
must be taken into account, '

1.

The caller may implicitly specify the time zone in

his time_conversion_table (which contains information
to handle time changes within only one zone) by using
<SP»> <SP> <SP> as the input character string for zone,
If the table contains only cne entry, there are no
complications, However, for multiple-entry tables,
the internal clock time is determined by using the
constant

[/

K = max (constant(i))

for all i, |

Each entry of time_conversion_table is checked unti]
T < time(i) + K

then the corresponding constant(i) is subtracted from
T to obtain the internal clock time. The value of K
is assumed to be ths constant corresponding to a
daylight time entry., Its use here establishes the
convention that standard time stays in effect until
daylight time becomes meaningful, Note that in this
case 0130 April 30, 1967 is accepted as standard time
and identical to 1230 April 30, 1967 which is
interpreted as daylight time, as is 0130 October 29,
1967. '



MULTICS SYSTEM~PROGRAMMERS? MANUAL SECTICN BY.15.02 PAGC 9

2. The caller may explicitly specify the time zone which
is in his time_conversion_table, Here, let

N = min (constant(i))
for all i, The table is searched until
T < time(i) + constant(i)

IT constant(i) = N then the internal clock t?me is
T - constant(i), How ver, if cons dnt(l) N and
time zone is not string(i ) the search is COH:IPUPd
This allows standard time to be accepted any time
since the next entry in a properly constructed time_
conversion table is a ”siandaro time" entry and
contains constant(i) = N, (Note that if T is a time
in July, 16867 and zone = EST then T < time(2) +
constant(2), constant(2) # N, and zone # string(2).
Howaver, T <time(3) + constant(3) and constant(3)
N.) If time zone is string(i), one additional test
is required based on the assufntion the current
entry indicates a transition from daylight time to
standard time, The time is gpﬂC1T1€d to be davlight
time, It is meaningful except cduring the first hour
of this interval, If

time(i-1)<T~-constant(i-1)<time(i~1)=constant(i)~-constant(i-~1)

an error is signaled since the explicit time does
not exist, Alsc, if the (i-1)th entry do=s not
exist an error is signaled; the initial entry
should be for standard time,

N

The caller may explicitly specify a time zone which
is in time zone c1b1e, No error rests are made;
T - constant(i) is the internal clock time.

(D

The four errors in calendar_input are handled by calli
seterr (BY,11,01) to record the error, then 510ﬁa111rg
calendar_input_err, The errors and thelr ccdes are:



MULTICS SYSTEM--PROGRAMMERS® MANUAL SECTION BY.15,02 PAGE 10

ci_001
ci_002

ci_003

ci_O0oy

The explicit time given does not exist,
Time_conversion_table is improperly constructed,

Specified time is beyond the range of time_

- conversion_table,

Error in time_zone_table., Maximum number of entries
allowed 1s 50, The last entry must contain the
string <SP> <SP> <SP>,



