
4 - • 

r 

TO: 
FROM: 
SUBJ: 
DATE: 

MSPM Distribution 
Karolyn Martin 
Error Handling, BY.11.00 
May 26, 1967 

Sections BY.11.00 - BY.11.04 are being re-issued to 
reflect the following changes in error handling: 

1. The name of the condition used to signal 
an error no longer contains a serial 
number; only one such signal is allowed 
per procedure (BY.11.00). 

2. The error line is formatted in printerr 
(BY.11.04), not in seterr (BY.11.01). 

3. There are two procedures instead of one 
to obtain error information in another 
procedure (BY.11.02). 

4. Errors which the user has requested be 
deleted, but were not deleted because 

5. 

of an option setting, are marked differently 
(BY. 11 • 03). 

The users error file resides in the process 
directory of each process in the user 
process group. 

6. An additional item of error information has 
been added: bit information in which such 
information as machine conditions may be 
recorded. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.11.00 PAGE 1 

Published: 05/26/67 
(Supersedes: BY.11.00, 10/07/66) 

Identification 

Overview of Error Handling 
D.R. Widrig, K. J. Martin 

Purpose 

This paper discusses some of the philosophy and techniques 
involved in the notion of errors and error handling. 
Subsequent sections discuss specific implementation details 
for the Multics standard error handling mechanisms and 
procedures. 

Discussion 

Attendant to any computation center (and more prevalent 
in larger systems) is the notion of error. In the context 
of a computation system, one could loosely identify an 
error as the name given an event whose occurrence is undesirable. 
Note that this does not imply an unexpected event, it 
only implies a de1eterious deviation from a planned event 
or chain of events. 

In order to constrain the field somewhat, we shall limit 
ourselves to an investigation which includes only errors 
which are Multics-user caused, or are a by-product of 
some system malfunction. Specifically excluded are lost 
tapes, fire in the computer room, poor quality of a print 
ribbon, logical "bugs" in a user's program, etc. 

While it is readily agreed that one cannot dispute the 
exact error in a given situation, (e.g., segment not found), 
it seems clear that there can be several interpretations 
as to the import, implication, or severity of the error. 
Moreover, such interpretations can also be altered according 
to the context of the imbedded error. To illustrate, 
suppose one wishes to eliminate segment A from the current 
working directory. It might seem reasonable for a delete 
command not to complain if A is not found. After all, 
the segment is no longer present after the command is 
completed and that is the objective of the delete command. 
On the other hand, the user may be vitally interested 
in knO\rJing that the segment was not there in the first 
place. As another example, suppose a user wishes to input 
a segment X. Using the context editor, it is important 



r 

,.. 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.11.OO PAGE 2 

to know whether X already exists. If so, it is assumed 
by the editor that the user wishes to edit X. If, however, 
X were not found, then the editor presumes the user wishes 
to create a new segment. Thus, the editor is guite concerned 
over the existence of segment X. 

A quite different concern may be found in the case of 
a compiler. In this case, the compiler may wish to delete 
Y so that it can replace it with a newer version from 
the current compilation. In this case, the compiler is 
unconcerned about the existence of previous versions of 
Y, it slmply wants them all to vanish so Y can be replaced 
with a newer version. 

In light of the above discussions, it seems clear that 
such II emotion" words as 11 fata 1 error" "warning" etc # ~ __,.._.• 

must be subject to strict definition; otherwise, many 
conflicts of personal taste will arise. 

We shall define a "fatal" error as one which precludes 
the continuing of a user's process on a normal basis. 
Note that this does not mean that being paged out of core 
is a fatal error, or that a compilation failed, or a segment 
was not available, etc. What is implied ih the notion 
of a fatal error is-rFie destruction of a user's file directory, 
inability to return to a standard listener, etc. It seems 
clear that the correct interpretation of a fatal error, 
from the user's viewpoint, is to abandon his current efforts 
and seek aid from competent personnel. 

Another less disastrous but still "critical" error includes 
the occurrence of difficulties for which no remedial procedure 
is specified. That is, an anomaly is detected (in a subroutine, 
for instance) for which there are no prescribed "fix-ups" 
or error returns. One might envision this type of error 
occurring when a square root routine detects a negative 
argument. If no defaults are set and the caller specified 
no error return, the subroutine is faced with a problem 
since it cannot simply return with some arbitrary number. 
That is, from the subroutine's point of view, the problem 
is unsolvable. 

It should be noted that many of the critical errors can 
readily be supplied with remedial tools. For instance, 
one could specify that the square root subroutine operates 
on the absolute value of the input arguments. Of course, 
such remedial tools must be clearly stated in program 
documentation and/or be alterable by the average user. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BYo11.OO PAGE 3 

A third type of error is the so-called "failure" error. 
In this category, one raises the error condition if unable 
to perform the requested task or function. Although this 
definition allows a great number of possibilities, it 
does admit to some specific examples. For instance, at 
one level, one might de.clare a failure condition upon 
failing to find a segment, upon failure in accessing a 
segment, etco At a much higher level, a command could 
signal a tai'lure to perform its task. Such a mechanism 
will be invaluable in chains of commands where one could 
specify that the failure of command Y should terminate 
the chain. For example, if a compiler could not successfully 
compile a given source program, it might not be reasonable 
to proceed with the loading, ill,. 

Note that not all deviations from a standard situation 
should be considered to be errors. In some cases a number 
of possible situations may occur in a procedure, each 
of which requires a different action on the part of that 
procedure's caller. None of the situations precludes 
appropriate action by the caller, however. In this case, 
it may be expedient to include a return argument in the 
calling sequence with which status information can be . 
returned to the caller, rather than handling low-probability 
situations as errors. 

It seems clear that errors can occur in almost any module, 
procedure, or process throughout the Multics system. 
To avoid confusion, it is also apparent that a standard 
method of announcing errors is mandatory. Moreover, it 
is not unreasonable to suppose that the user may wish 
to create or define his own errors. For example, a user 
who has programmed a matrix inversion routine may wish 
to signal certain kinds of errors such as a zero determinant, 
loss of precision, .!ll.£. It follows that any error signalling 
mechanism adopted by the system should also be available 
for general use by the average user. 

Another requirement for error handling is immediately 
evident; each different error requires a unique error 
code. For convenience, a simple numerical scheme will 
be used. For example, certain file system modules may 
establish that error 1 means a file cannot be found, error 
2 implies that the file is already initiated, etc 0 It 
will be the responsibility of each module to ma1ntain 
and manage their error codes, thus insuring uniqueness 
within a given module. A method is provided to record 
the code and other information about an error before announcing 
the error. Recording of this information is discussed 
on the following page. 



r 

r 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.11~ □□ 

I 
Conditions in Multics are fault-like occurrences which 
necessitate action outside the normal flow of control. 
A procedure may state that upon the arising of one of 
these occurrences in a called procedure, it wishes to 
~ain control and execute a block of code, that is, it 
1s preparing for a possible situation. Either of the 
follow'ing EPL statements express this: 

on condition (X) begin; or 
ca 11 condition (" X", handler _procedure); 

When a called procedure wishes to cause one of these 
occurrences to happen, it executes either of: 

signal condition (X); or 
call signal ("X"); 

PAGE 4 

Any procedure which has previously prepared for the signalling 
of this particular condition will "catch" the condition. 
If no procedure wants to take particular action when the 
occurrence arises, a default handler is provided by the 
system. See BD.9.04 for a complete discussion of condition 
handling in Multics. 

To provide a standard method of announcing errors, the 
detection of the error is announced by an EPL statement 
of the form: 

signal condition (subroutine_name_err); or 

a call to the supervisor procedure: 

ca 11 s igna 1 (" sub rout i ne_name_e rri• ) ; 

Thus, an error in the matrix inversjion routine might be 
signalled by: 

signal condition (matrixinvert_err); 

One slight inconvenience may arise in using the above 
method. Since the signal statement in PL/I requires a 
standard identifier as the object of the signal, if the 
subroutine's name (concatenated with II err") is longer 
than 31 characters, the user wi 11 have-to ca 11 11 signa 11' 
directly. . 

Because of the expense of enabling for conditions and . 
signalling them, it is desirable to restrict the number 
of error conditions signalled by any one procedure. In 
general, procedures are restricted to one signal apiece 
for error purposes. The condition handler uses the 



r 

,. 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.11.00 PAGE 5 

error code and other information to further distinguish 
between errors (see belO\'V and BY.11.02 for an explanation 
of error information). 

The Shell will effectively operate with all error conditions 
enabled. (Since there are a great many possible error 
conditions, not all of which may be anticipated by a programmer, 
the signal processing subroutine signals the procedure 
unclaimed signal which is part of the Shell in the case 
of detectTng ''unclaimed'I signals.) Thus, if the user 
does not see fit to enable a particular error condition, 
any unplanned errors wi 11 automatically re-invoke the 
Shel 1. After the invocation, the user wi 11 undoubtedly 
wish to take corrective action. To achieve this ~oal, 
no system housekeepin~ will be done on the detection of 
the error condition since the user may wish to examine 
the stack, various data bases, active segments, and so 
on. 

In order to properly analyze errors, it is important to 
know three basic items: (1) nature of the error, (2) 
location of error detection, and (3) caller of program 
detecting the error. In addition, it will frequently • 
be useful to include extra or explanatory parameters which 
can be used by the error handler to properly interpret 
the remedial action to be taken. One explanatory item, 
the "error description", is mandatory. The error description 
consists of a character string, generated or maintained 
by the program detecting the error, which gives a helpful 
description of the error. This item will be found to 
be of great utility when making an analysis of a particular 
error. A typical error description might be the string 
"segment not found". Bit information may prove helpful 
in analyzing some errors. Additional character information 
may be useful to record such items as the symbolic label 
where the error occurred. 

It appears that the fol lowing 1 ist represents minimal 
information necessary to catalog an error. 

1. Location of call (caller) 
2. Location of error detection (callee) 
3. Error code 
4. Error description 
5. Extra bi.t-string information 
6. Extra character-string information 



r 
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY. 11 .DO PAGE 6 

In order to convey the error information to interested 
spectators, it is necessary to leave the material in a 
standard vector (or arrangement) in a standard repository. 
To this end, it sha 11 be understood that the segment "error _out" 
in the process directory will receive all error messages 
associated with a given process. The error information 
in the error segment will be arranged in the following 
manner: 

1 • 
2. 

3. 

4. 
5. 
6. 
7. 

Calendar time 
Call loc-(Includes both the segment name and the 

- · offset) 
Error lac (Includes both the segment name and the 

- offset) 
Error code 
Error-info 
Extra-bit info 
Extra-char info - -

The following sections (BY.11.01 - BY.11.04) more fully 
describe the error-handling procedures which are: 

1. Seterr - a procedure which formats error information 
and appends a complete error description at the 
end of the user's error segment for later use. 

2. Geterr - a procedure which returns to the user the 
character information from the last error description 
found in the error segment. Geterr complete - a 
procedure which returns all of the Tast error 
description. 

3. Delerr - a procedure which deletes the last 
complete error description from the user's error 
segment. 

4. Printerr - a procedure which takes all error 
descriptions or one selected description from 
the user's error segment, formats, and prints it. 

The following example illustrates a straightforward application 
of the Multics standard techniques for error handling. 
Note that the actual occurrence of the error is an absolute 
event; however, the interpretation of the error is relative 
to the calling program and the entire embedded system 
the user has developed. Sections BY.11.01 - BY.11.04 
should be referred to for explanation of calls to the 
procedures listed above. 

l'• . '',,' ' .,, 



r 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.11.00 PAGE 7 

quadratic: 

Simple example of error handling 

proc(a,b,c) float; 

/* This procedure returns the larger of two real 
roots of quadratic equations. Complex roots are 
considered to be errors.*/ 

dcl (a,b,c,d) float, dummy char(O); 
dcl square root ext entry (float) float; 
dcl who caTled ext entry ptr; 
dcl neg:root label init(neg_rt); 

/* set error return for negative arguments *I 
on condition (square_root_err) go to neg_root; 

error_ loc; d = square_root (b~ - 4.0*a*c); 

return ((-b+d)/(2.0*a)); 

I* error, negative square root, erase square root 
comment, set complaint from this subroutine*/ 

dcl code char (3) var init ("001"), info char(23) 

neg_rt: 

var in it ("complex roots, bad data"), nu 1 l_char 
char(O) var init (""); 

call delerr; 

call seterr (error_loc,code,info,null_char,null_char); 

signal condition (quadratic_err); 

/* if signal returns, return standard answer*/ 

return (O.O); 

end quadratic; 


