TO:

FROM:

MSPM Distribution
E. W, Meyer

SUBJECT: BX,17.01

DATE

03/11/68

This revision of GEC@S Segment Loader for Multics reflects
the following changes:

(M
(2)

(3)

(4)
(5)
(6)
(7)

a new control line, "lowload j" has been implemented.
the calling sequence required to interface with the
"call_out" control line has been altered to conform
to GMAP and F@RTRAN standards.

there is now a 64 word slave prefix occupying words
0-63 of the created segment.

a new option, "1ist" has been added.
gecos_seg may create SYMDEF “s for its own purposes.
error codes are now defined.

many 'gecos_seg" procedure segments have been renamed,
combined, or added.

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BX,17,01 PAGE 1

Published: 03/08/68
(Supersedes: BX.17.01, 08/24/67;
BX.,17,01A, 12/15/67)

Identification

GEC@S segment loader for Multics
gecos_seg
E. W. Meyer, Jr. and D, B, Wagner

Purpose

The gecos_seg command is the basic tool to be used in
carrying 635 programs into Multics, Gecos_seg loads a
collect?on of 645 object '"decks" into an impure procedure
segment and sets up linkage and call-translators so that
the procedure can communicate with its environment,

The loader which operates as part of the gecos_seg command
is a one pass loader which loads successive GMAP programs
into a created Multics segment from the highest location
downward and makes proper interprogram links, None of

the GECOS standard options or debugging facilities are
available, nor is a library search made, Only the preface
and text cards are recognized, all other are ignored,
On-line error messages are confined to errors within the
loader program itself, such fatal errors as segment full
or misplaced preface card, and a listing of all undefined
SYMREFS following the loading of the program,

Usage
Gecos_seg is invoked through the command line,

gecos_seg alpha
where algba.gecos_seg is an ascii "load list" file, This
file is a series of "control lines" telling which 635
object decks to load, what call-translators to create
in the segment, and what in-references to include in the

linkage section, The procedure segment created will have
the name alpha.

Basic_Control Lines

The control 1line

segment_size n

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BX,17.01 PAGE 2

where n is a decimal number, directs gecos_seg to create
the text segment alpha of length n words and to load the
635 object decks from the highest location downward,

The highload loading order is illustrated in Figure 1(a).
If the unallocated region between blank common and the
pro?ram region becomes used up durin? loading, an error
will be signaled and loading discontinued,

The control 1ine

lowload j

where j is a decimal number, can be used instead of the
"segment_size" control line to direct gecos_seg to load
the 635 object checks from lowest location upward. j
specifies the length of the blank common region, The
lowload loading order is illustrated in Figure 1(b).

The control line
object beta

directs gecos_seg to load the 635 object deck beta,6350b ject
into the segment., Gecos_seg relocates addresses properly
and links all SYMREF“s and BLOCK’s exactly as GELOAD would,
(Be;? ?ay be composed of a directory pathname and entry
prefix).

The control line

reference_in gamma delta

directs gecos_seg to create linkage so that the reference
alpha$gamma (where al is the name of the procedure
segment being created) refers to the SYMREF delta.

The control line

call_in gamma delta

directs gecos_seg to set up a "call translator" in the

text segment, This call translator does a standard Multics
e, followed by a standard Multics return., Gecos_seg

creates linkage as for the reference_in control line so

that a standard Multics call to alpha$gamma reaches this

call translator, No arguments are permitted on a call

in,

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BX,17.01 PAGE 3

The control 1line

call_out gamma delta

specifies to gecos_seg that all SYMREF’s to the name delta
(which presumably are referenced only in GECOS standard
calls) should go to a call translator which makes a standard
Multics argument 1ist and calls the procedure gamma.

(The case in which gamma consists of segmentientr¥'is
allowable), Only one argument is allowed in a call out,
The control lines must be ordered as follows:

(a) one "segment_size n" or "lowload j" control line,*

(b) one or more "object beta" control lines.

(c) any number or none of the following (in any order):

"reference_in gamma delta"
"call_in gamma delta
"call_out gamma delta"

% it is possible to achieve overlays through the repeated
use of "segment_size" and "lowload" control lines
interspersed within a ?roup of "object" control lines,
A "lowloadrg" control line will direct the loading of
the followinhg 635 object decks upward from location
j + 64, and a "segment_size pn" control line will direct

the loading of the folTowing object decks downward
from location n,

Slave Prefix

The slave prefix is 64 word block occupying words 0O - 63
of the text segment, corresponding to the slave prefix
used by GECOS for inter-activity communication, (see
CPB-1003D pp. 125-130),

The only cell that is defined by gecos_se? is absolute
location 31, which contains program load limits, At the

end of loading, the left half of address 31 contains the
address of the first location above the blank common region,
and the right half contains the address of the first location
below the subprogram and labeled common region,

In a highload ("segment_size" control line used), this
identifies the 1imits of the unallocated region, If
multiple "lowload" and "segment_size" control lines are
used, this information will be Tncorrect,

VMULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX,17.01 PAGE 4

Options

Two options are defined:

brief curtails all on_line output except error messages.
If "brief'" is off, a load map is written out,

list directs gecos_seg to produce the listin? segment
alpha.list following completion of the loading,
If "1ist" is off, no listing segment is produced,

Special SYMDEF°’s

The SYMDEF “s 200001 thru £99999 may be generated within the
gecos_se% command in order to process "call_in" and "call_out"
control lines, and should not be used within the supplied

ob ject decks,

Undefined Symbols

If any subprograms have made external references (SYMREF‘s)
which have not been defined within other subprograms,

the on-1ine comment "undefined symbols" will appear, followed
by (if "brief" is off) a listing of all undefined symbols,
Text segment cells makin? references to such symbols will

not be relocated. This 1s a non-fatal error,

Fatal Errors

Gecos_seg uses the standard error-handling mechanism as
described in MSPM sections BY,11,00 - BY,11,04,

The following error codes are defined:

User errors

21

control line not recognized,

22 - intersection of blank common and program region during
highload,

23 - non-decimal character in control line numeral,

24 - SYMDEF supplied for "reference_in" or "call_in" control
line not found,

25 - created segment can‘t be moved into the working directory,

26 - segment can not be created in process directory,

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BX°17.0T PAGE 5

Possible object deck errors
31 - premature deck end during repeated preface card search,
32 - repeated preface card not found,
33 - attempt to load beyond segment 1imits,
34 - non-existant SYMREF index.

35 - attempt to retrieve beyond 1imits of card image,

System errors
41 - text_seg: out of bounds on retrieval
42 - ascii_out: non-existant line number
43 - ascii_out: target segment unspecified
L4 - tbl: '"def" out of bounds
45 - seg_control: segment cén not be expanded

L6 - seg_control: segment can not be retrieved

Implementation

The loading process operates by sequentially reading the
control lines and performing the action designated by
each,

The control line
"segment_size p" or "lowload j"

causes the creation in the process directory of the text
and 1inka?e segments <unique_name> and <unique_name>,link,
where <unique_name> is a unique 15 character string created
by ca11in? "unique_chars", The loader is set to its
initial highload or lowload state and the definitions,
reference, and linkage tables are cleared (see below).

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BX.17.01 PAGE 6

The control line

"object beta"

initiates the object deck segment beta.635object and starts
the loader, reading preface and text card images from
the object segment and processing them,

The processing of the preface and text cards involves
the use of three internal tables declared within the procedure

" tb'lu :

Definitions Table (def)

dc1 1 def (d_top) based (d_pntr),

2 sym bit (36), /* external symbol */

2 val fixed bin (18), /* value of sym %/

2 x1k fixed bin (18), /* index to undefined
symbol chain */

2 sdef bit (1); /* defined switch */

"def" is a linear array of substructures, each consisting
of four elements:

sym

val

x 1k

sdef

a six character bcd symbol designated as a SYMDEF,
SYMREF, or LABELED COMMON type external symbol within
a preface card,

the relocated value of this symbol. In the case of a
SYMREF, the value is undefined prior to encountering
the corresponding SYMDEF .

zero unless the symbol is undefined and fields
involving it have been loaded into the created
procedure se?ment. In that case xlk is an index to a
list in the Ink table (see below) of the fields in the
loaded program which require the value of this symbol.

a switch indicating whether or not the value has been
defined. "0"b = undefined; "1"b = defined.

1t is appended to whenever an external symbol entry which
does not already exist in def is encountered on a preface
card. The definitions table is maintained throughout

the loading process; it is cleared only through the action
of the "segment_size n" or "lowload j" control line.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.17.01 PAGE 7

Reference Table (ref)
dcl ref (r_top) fixed bin (18) based (r_pntr);

The reference table is a linear array of indices to symbol
substructures within "def"., 1t is cleared upon encountering
the first preface card of a new subprogram, Each SYMREF

or LABELED COMMON symbol encountered thereafter within

the preface card group causes an index to the symbol’s
position in "def" to be appended onto the reference table,
Thus a text card entry using the jth external symbol reference
declared within the preface card(s) need only refer to

it by the number j. The symbol”’s position in "def'" can

be picked up from ref(]).

Linkage Table (1nk)
dc1 1 Ink_st(1_top) based (1_pntr),
2 xInk fixed bin (18), /* index to next

substructure in
the 1list */

2 xtseg fixed bin (18), /* index to loaded
program word ¥*/

2 1_r bit (1), /* left/right switch */

2 p_m bit (1); /* plus/minus switch */

It may happen that during the loading process a program
with SYMREF external references is loaded before all those
SYMREFs have been defined via SYMDEFs in the preface cards
of other subprograms. Whenever a text card entry that
uses such a SYMREF is encountered, the "def" entry for
that symbol will be found to have an undefined value.

If this is to be a one pass loader, there must be a way

to load these fields into the text segment as they are
encountered and later relocate them when the SYMREF is
defined with its SYMDEF in a subsequent program. A solution
to this problem is to load the absolute value of the addend
into the program field and to make an entry under a list

for that symbol consisting of the following:

(1) the address of the field relative to the beginning of the
text segment.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.17.01 PAGE 8

(2) a switch setting indicating whether the field is in the
left or right half of the word.

(3) a switch setting indicating whether the sign of the addend
is plus or minus. ’

When the external symbol is eventually defined by a SYMDEF
entry in a subsequent program’s preface card, the loader
will go through the loaded field list for that symbol

and properly relocate the listed fields using the newly
defined value of the symbol. Subsequent fie?ds using

that SYMREF will be relocated and loaded directly,

The linkage table contains the loaded field 1lists of all
undefined SYMREFs, It is essentially a free pool of substructures
within an allocated structure., Each substructure is either
unused (in which case it is chalined to a free substructure
list) or it is an entry in the loaded field list of some
undefined SYMREF, Each substructure that is part of such

a list contains the three elements '"xtseg', "1_r", and

"p_m' describing the position of the field requiring relocation
and the sign of its addend, and also the index " x1nk"

to the next entry in the 1list. The last entry in each

1ist signals this fact with "xInk" = 0, An index to the

first entry in each list is contained in the substructure

"x1k" of the corresponding SYMREF “s entry in the definitions
table.

Figure 2 illustrates the relationship between "ref", 'def",
"1nk", and the program segment.

The Preface Card

A preface card signals the beginning of a new subprogram,

When it is encountered, space for the new program is allocated
in an area of the text segment just below or above the
previously allocated program region. The BLANK COMMON

length becomes the maximum of the current length and the
requirements of the new program, If (in highload) the

new program and BLANK COMMON regions intersect following

this allocation, loading is discontinued and a "segment

full" error is signaled.

Next the external symbols on the preface card are processed.
The class code of each entry is checked to determine whether
the symbol is a SYMDEF, SYMREF, or LABELED COMMON, and

the indicated action is taken:

MULTICS SYSTEM-PROGRAMMER ‘S MANUAL SECTION BX.17.01 PAGE 9

SYMDEF (class code = 0 or 1) -- def is searched for the
symbol, If it does not exist a new structure is appended
onto def to hold the symbol and the value supplied in

its preface entry. If it exists and is already defined,
no action is taken, If it exists in an undefined status
(previously appended by a SYMREF) the SYMDEF “s value is
inserted and any existing loaded field list is operated

upon,

SYMREF (class code = 5) -- def is searched for the symbol;
if it isn“t found, an entry for it with undefined status
set is appended onto def. 1In either case, the index to
the symbol“’s position in def is then appended onto the
reference table,

LABELED COMMON (class code = 6 or 7) =-- def is searched

for the symbol, If it is not found in def, space is allocated
for the labeled common at the bottom or top of the currently
allocated program region (in highload check for BLANK

COMMON and program region intersection; if so, do a 'segment
full" error return), and a structure for the symbol is
appended onto def with "val" set to the starting cell

of the LABELED COMMON area, If the LABELED COMMON symbol

is originally found in def, no program space is allocated

as a previous allocation applies., 1In both cases an index

to the symbol1“s position in def is appended onto ref.

A1l external symbol entries are processed in this manner.

When the preface card is exhausted a check is made to
determine whether or not more entries are expected on
immediately following preface cards, 1f so the next card

is read in (any type other than preface card generates

an error). Otherwise it is assumed that text cards for

the current program follow., The next preface card encountered
terminates the loading of the current program and allocates
space and initiates loading of the new program,

The Text Card

Whenever a text card is encountered in the object segment
the pro?ram area allocation and external symbol declarations
of the immediately preceeding preface card(s) apply.

The header of the text card provides information as to
whether the text card entries are to be relocated and

loaded into the current program area or into one of the
LABELED COMMON regions declared in the preface card(s).

It also provides a loading address relative to the beginning
of that region for the first text entry. Subsequent entries
are loaded into sequentially higher locations.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.17.01 PAGE 10

Relocation and loading of the text card entries occurs

as described in pp. 21-23 of the G.E, General Loader Manual
CPB-1008D. Whenever a field involving an undefined SYMREF
is encountered, the absolute value of the addend is inserted
into the field and a structure pointing to the loaded

field is appended onto the symbol’s external linkage chain.
These fields are relocated when the symbol is defined.

It may happen that another header word follows the text
entries of the previous header on the card. 1In this case,
reload the header information and process the following
text entries accordingly.

The control line
reference_in gamma delta

causes a search of def for the 36 bit GMAP representation
of delta and the creation in the external symbol table

of the ascii symbol gamma and the value of delta found

in def, 1If delta is not found in def or its value is
undefined an error is generated.

The control line
call_in gamma delta

causes a search of def for delta. If it is not found

or is undefined, an error is generated. Otherwise a Multics
save sequence, a GMAP TSX1 <value of delta in def> call
instruction, and a Multics return sequence are appended
onto the bottom or top of the program region through the
loading of a pseudo-object deck, An entry for gamma and

a linkage to the new call_in sequence is created In alpha’s
linkage section.,

The control line
call_out gamma delta
causes a Multics calling sequence to the external entry

gamma to be created in the text segment under construction.
The first instruction of this sequence has the SYMDEF

delta.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.17.01 PAGE 11

The following GMAP calling sequence is required:

loc TSX1 delta (delta is a SYMREF)

loc+l <return location>
loc+2 1ignored
~loc+3 <argument>

The instruction sequence created and loaded under SYMDEF
delta does the following:

(a) saves the return address

(b) creates a one-argument list consisting of the argument
count plus an its pair containing the address contained
in the left half of loc+3.

(c) performs a standard Multics call to the external entry
point gamma

(d) (after returning from gamma) returns to loc+1,

After processing all the control lines, the undefined

symbol search is made, the list segment <unique_name>.1list

is prepared if requested, and then the segments are transferred
from the process directory to the working directory as

alpha, alpha.link, and alpha.list.
Procedure Segments of the loader Program

ascii_out

contains entries used by various procedures to assemble

and write-out console output, and entries used by " load_list"
(see below) to insert assembled output lines into the

listing segment.

deck_seg

is used to reference object deck card images in order
of sequence and to retrieve a card image subfield.

ext

processes the control lines "reference_in", “"call_in",
and "call_out".

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.17.01 PAGE 12

gecos_error

is used to signal all fatal errors occuring within the
gecos_seg command.

gecos_seg

is the upper level procedure of the loader and is invoked
by the shell upon receipt of a gecos_seg command.

It initiates the control line segment alpha.gecos_seg
and reads the control lines, calling the proper procedure
to handle each. Upon exhaustion of the control lines,

it initiates the necessary cleanup routines.

link_seg

is called by "ext" to add linkage definitions, external
symbols, and external entries to the segment. 1Its initializing
and cleanup routines are called directly from '"gecos_seg".

load_list

is called by '"gecos_sed" to produce a load listing of
the created text and linkage segments,

object

is called by "gecos_seg' or "ext" to process an object
deck. It calls 'deck sed" to reference and identify the
card images, calling "pref" or "text" (see below) upon
recognition of a preface or text card respectively.

pref

~is called by "ob{ect" to process a preface card. If the

preface card indicates that related preface cards follow,
it reads these cards itself and does not return to "object"
until all related preface cards have been processed.

seg_control

is the interface between the gecos_seg command and the
basic file system, It is used to create and move segments,
to retrieve base pointers and current lengths, and to
update segment lengths.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.17.01 PAGE 13

tb1

contains all the entries involved in initializing and
referencing the internal tables '"def", "ref", and '"1Ink".

text

is called by "object" to process a single text card.
It returns to "object" after all entries on this card
have been relocated and loaded.

text_seg

contains entries to retrieve and insert cells into the
text segment.

util

contains various utility routines used by other procedures
of gecos_seq.

In addition, there are two data segments, "call_in,6350bject",
and "call_out.6350bject", which are used as object deck
ﬁrog?types by the "call_in" and "call_out" control line
andlers,

MULTICS SYSTEM-PROGRAMMERS © MANUAL

64

64 word slave prefix

subprograms and
labeled common in
order of input

new labeled common
specified by subpro-
gram 2

subprogram 2

labeled common
specified by sub-
program 1

subprogram 1

(a) highload

Figure 1.

SECTION BX.17.01

PAGE 14

b4 word slave prefiﬁ

64
blank
common

64+j

subprogram 1

program 1

labeled common
specified by sub-

subprogram 2

rogram 2

new labeled common
pecified by sub-

' in order
<> of input

subprograms and
labeled common

S

(b) lowload

gecos_seg loading order

MULTICS SYSTEM-PROGRAMMERS © MANUAL

et cavd

symrel ()

N

i ref cable

¥
ﬂ reference to.
i "symb''

dell vabie

SECTION BX.17,01 PAGE 15

—— —— —

j |

.
o R

P ot "5-\,;.1"1"

e .
GO Lociid

vala

{
|
g xlk = QO
¥

external
syabol

.E~———J \'lL‘ | IS

Swo=

J
é E ‘—-__'y/,//,r—-—-ﬁ>- BRGNS
L——-b — valb

oo, s
: —

dd

- NN

SViaihod

dotf sw o= O

irce

]
{ . lnk table

unused
{cunmis
!
i . z
¥

!
(@]

1/r =
p/m

]

unused

(1

P e e et e e s e 2

e £ S
e N

AL 21O S E

N ‘-—--;_——___j T
§ unused ‘

. E uade finesa
(undc:.§§L oxternal
A

text
segment

Lalpha>

AN b
&‘!uddlﬁ f

s valb- tadd |
_to replace
 Lhiis Fledd

i/r =1 § _ ﬁ add?2}

ar

valb+i add2|
L.go replace
this ricld

Figure 2. Relationships among the Internal Tables and the

Text Segment

