
... 

r 

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BX.17 .00 PAGE 1 

Published: 08/24/67 

Identification 

Using GECOS programs in Multics 
D. B. Wagner 

Discussion 

There will be various occasions on which it is desirable 
to make programs written for the GE 635 run under Multics. 
The two such programs which are most important are, 

1. The EPLBSA assembler (See BN.8) 

2. The TMG table interpreter (See BN.4) 

The EPLBSA assembler is almost all written in FORTRAN 
IV, so the final answer to using it in Multics will be 
to do some minor editing and compile it using the Multics 
FORTRAN IV compiler. Unfortunately the compiler will 
not be ready at the time EPLBSA is needed, so an interim 
measure is required. 

The TMG table interpreter is a more difficult case. It 
was written originally iA CDC 1604 assembly language, 
edited over to IBM 7040 assembly language, converted to 
IBM 7090 BEFAP by defining macros for the 7040 opcodes, 
and finally converted to GE 635 G~P by further defining 
macros for the 7090 op-codes. The program has gradually 
lost almost all its commentary and any trace of coherence 
it may ever have had. There is little likelihood that 
any further mechanical translation of this program is 
even possible. 

In addition Multics will be a much easier system for people 
to get used to if we can easily carry over, 

3. Most ordinary scientific programs written in 
FORTRAN IV and G~P. 

The basic method which has been chosen for carrying all 
these programs over to Multics takes advantage of the 
fact that the GE 645 is simply a GE 635 with the appending 
hardware and a collection of new instructions loosely 
hung on. If a program is restricted to operating within 
a single segment on the 645 it can easily be made to believe 
it is running on a 635. The gecos_seg conmand (see BX.17.01) 
accepts as input a collection of GECOS relocatable and 
absolute program decks and produces a single (unfortunately 
impure) procedure segment. Means will be available for 
interfacing with ordinary Multics procedures in accordance 
with Multics standards. 



MJLTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION BX.17.00 PAGE 2 

Hard-core GECOS functions (such as 10) which are called 
with MME instructions as discussed later, are performed 
by the special MME-catcher procedure gecos_nme discussed 
in BX • 1 7 • 02 • 

These GECOS obJect decks can be obtained by assembly or 
compilation off-line while Multics is not running. HONever 
it should be possible to use the same method to carry 
over the following, which would make maintenance much 
easier: 

4. The GMAP assembler 

5. The GECOS Fortran IV compiler. 

GECOS program Interfaces 

Programs which run under GECOS communicate with each other 
and with their environment using any of the follONing 
mechanisms. GE documentation is cited by document number 
below. The documents cited are: 

, . 

2. 

3. 

CPB-10040 

CPB-1195 

CPB-1008 

GE 625/635 Programming Reference Manual 
(includes GMAP) 

GECOS manua 1 

GELOAD manual 

Normally all subroutine calls (including all calls compiled 
by FORTRAN IV) are made using the standard GMAP CALL 
macro (described in CPB-1004D, p. II 76). This macro 
provides a special mechanism for error returns and 
some special error linkage information. 

References to external entries are made through the · 
GMAP pseudo-ops SYM:>EF and SYMREF (described in 'cPB-10040, 
pp. 111 46-47). These provide direct linkage at load 
time: there is no "transfer vector" as with the BSS 
loader. Data is often shared among subroutines using 
this mechanism also: in particular TMG accesses its 
driving table using SYMREF 's. ,. 

Data is more often shared among subroutines using the 
BLOCK pseudo-op of GMAP (described in CPB-10040, p. 57). 
The 11 1 abe 11 ed corrmon" and II b 1 ank conmon" of FORTRAN IV 
are implemented using this mechanism, for example. 



r 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.17.00 PAGE 3 

4. Some GECOS functions are invoked using the MME (master 
mode entry) instruction, which causes a fault to the 
supervisor. A list of these functions is given in 
CPB-1195, pp. 103-124. They include overlay processing, 
the basic I/0 functions (normally used only through 
the library I/0 package GEFRC), and a collection of 
simple system functions such as getting the date and 
time, terminating the job, etc. The FORTRAN IV comp~l~. 
apparently does not compile any MME instructions, but 
some of its run-time library subroutines must use them. 

5. Some special GECOS debugging functions are invoked using 
the DRL (derail) instruction. See CPB-1008D, pp. 33-37. 

6. Programs written in GMl\P can use a great many dirties 
conmunicating with each other. Some parts of EPLBSA, 
for example, depend upon otherwise irrelevant details 
of the GECOS loader such as the fact that it loads from 
the top of allocated memory down. 

8.!J. examples the method for EPLBSA 

EPLBSA consists of 35 relocatable subroutines, 27 written 
in GMl\P. Two (INPUTS and OUTPUTS) are GML\P- written interfaces 
to GEFRC input-output functions. A few FORTRAN library 
subroutines are used. The technique used to carry EPLBSA 
over to Multics will be roughly as follows; it is expected 
that a similar technique will be useful in carrying over 
TMG. 

The simplest way of creating an EPLBSA conmand in Multics 
is as fo 11 ows , 

1. Get the 635 object decks for the various pieces 
of EPLBSA into Multics. Use gecos_seg to make a 
procedure segment from these. Give this segment 
some strange name. 

2. Write in EPL an interface program (called EPLBSA) 
which sets up the GECOS master mode entry simulator 
as fault-catcher for MME's, calls the various 
initialization entries in this fault-catcher 
(described in BX.17.02), and makes a standard call 
into the segment created by gecos_seg. 

This simple method leaves something to be desired in the 
way of efficiencr. In particular a lot of unwieldy machinery 
is involved ins mulating GECOS input-output. Further, 
we would like to minimize the amount of impure procedure 
floating around, especially in a program as heavily used 
as EPLBSA. Therefore two more steps may be desirable. 



MULTICS SYSTEM-PROGRAMMERS_. ML\NUAL SECTION BX .17. 00 PAGE 4 

3. Write EPL versions of EPLBSA-s two master 1/0 
routines. INPUTS and OUTPUTS. Use the call_out 
control line in gecos_seg to specify that calls to 
these routines should be translated into Multics 
standard calls to the EPL versions. 

4. Rewrite in appropriate languages any pieces of 
EPLBSA which look easy to do. Then these can be 
used as in (3) to reduce the amount of impure 
procedure. 

Note that step 3 means that EPLBSA does not need the rather 
ugly GECOS 1/0 simulation machinery. If EPLBSA were the 
only program we were interested in. this would be a vastly 
easier approach. TMG is less tractable in these matters, 
however. 


