MULTICS SYSTEM=PROGRAMMERS' MAMUAL Section BX,10,02 PAGE 1

Published: 6/7/66

identificat?on

Program tracing under Interactive control
tracer :
D. B, Wagner

Purpose

Use of tracer allows the execution of a program to be
monitored on-line in as fine or coarse a manner as desired,

Usage

To use tracer the user inserts at strategic points 1In his
program calls (using the standard call sequence) to the
entry tracerSreport in the tracer command. Some ways of
causing these calls to occur automatically on occurrence of
certaln events will be provided, such as the breaker and
monitor commands described in RBX,10.03 and BX,10,04, There
may also be a debug mode in the PL/I| compiler which causes
such calls to be Iinserted between statements, giving full
information concerning variahles changed, previous and new
values, etc, The tracer command Is then used to store up
actions to be performed whenever tracer$report is called
with certain arguments., These actlions may include both
cormrmands and requests to commands,

The format of the calls to tracerS$report is essentially up
to the user, except that the first argument nmust be a
character-string name for the call which will be used to
identify the actions to be performed.

The command
tracer

causes tracer to begin reading requests from the console,
The user may type any of the requests 1isted below or any of
the '"control" requests (i1f, else, do, end) described in
BX.10,00, He may also type macro invocations (in the same
form as In the command language: see PX., 1.01) which expand
to sequences of these requests, If ~a line received by
tracer (after macro expansion) 1Is not recognizable as a
request, it is treated as a command., The line Is ¢given to
the Shell, which glves an appronriate diagnostic {if It s
not a command either,

Implementation

The following digresslion is necessary to explain the action
of the tracer cormmand. See the diagram of Fig, 1. The
command listener, the debugging programs, and most other

MULTICS SYSTEM-PROGRAMMERS' MAMUAL Section BRX,10,02 PAGE 2

interactive programs read their requests through a '"request
handler'" which acts as an interface to the |/0 system., It
expands macros, handles the semicolon convention, etc. The
request handler keeps a special data base called the request
ueur, and before the request handler reads a line from the
console it checks to see if there are any lines waiting in

the request queue, I|f there are it uses the first 1line 1In
the queue Instead. (The macro processor will be one program
which places lines into the request queue: the entire

first-level expansion of a macro invocation is simply put at
the head of the queue.)

Vlhen the setaction request described below specifies a name
and a 1ist of commands and requests, these are stored In the
tracer data base. \hen eventually the user's program |is
started and a call to tracerS$Sreport occurs, the first
argument of the call is matched arainst all the stored-up

names, If a match s found the corresponding 1list of
command and request lines 1s placed at the head of the
request queue and the command 1listener 1is called. This

scheme provides a very general tracing facility.

Requests to Tracer

Setaction and endaction are the basic requests: the
sequence

setaction name
.

. action
endaction

causes the action specified to be stored away in a data base
used by the trace entry. The name 1is a character-string
identifier, to be matched against the first argument of each
trace call, Action is a sequence of commands and requests,
It is stored up to be performed whenever a call to the trace
entry tracerSreport has the first argument equal to nane.
If more than one action has been specified by setaction
requests for a given name, they willl be performed in the
order given. Mame may be "*", in which case action is to be
performed on every call to tracer$report.

The action specification may of course include conditional
(if ... then ...) requests which narrow down the selection
of action still further than the naming convention does.
Expressions may include the special function

tracearg(n)

which gets the n'th argument of the last trace call,

MULTICS SYSTEM-PROGRAMMERS' MAMUAL Section £X.,10.02 PAGE 3

The request

reéetaction pnanea
deletes ‘all actlons stored up for the name given.
The requests |

listaction
listaction name

cause elther all currently specified actions, or all
currently specifled actions for the given call name, to be
listed in a convenient format.

The request

exit

causes tracer to return to its caller, usually the Shell.

-
ressi
i Probe Expression L.
Evaluator User
Program -
¥ 1 — &
and
1/0 Request Command Tracer
System Handler [Listener Shell ¥ Tracer . . e [Data
Repor
; Tracer . v
. : L3 1] . - - L L] . Data :
Request . " Base Trap .
Queue trette s Breaker -—] Handlers)
Macro E i .
Monitor . - e o o | Interpretefe » « ¢ ==«
Processor
Monitor
Data
Base

Figure 1:

Probe, tracer, breaker, and

monitor and their relation

to selected parts of Multics,

Arrows represent calls and

dotted lines represent data

paths.

Z0°01°X9 NOILDIS

¥ dOvd

TVOANYH | SYTNAVID0dd NI LSAS SOLITNIN

