
MULTICS SYSTEf'l)_PROGRAMMERS' MANUAL Section ~X.10.00

Identification

Interactive debuggin~ aids
D. B. Wagner

PurposP.

Puhl i shed: . 6/7/66

PAGE 1

The need for an "arsenal of nev,i exterminators" for the
"bup;s" v,h !ch have plagued prop;rariners since the earliest
days of computing has been thoroughly discuss~d elsewhere
Ce.r,. see R0021). The collection of pror,rams described here
Cproh~, trac~r, hreak~r, anrl Monitor, nX.10.0l-BX.10.04)
form an interactive dehug~ine aid which gathers into a very
general framework Most of the Ideas in rlebugging which have
been floating around In separate proeraMs In different
systems. This debu~ginp; aid ls intended for interactive use
but will certainly be usable by the hatch-oriented user
(simply read "control card" for "request" throup;hout),

A r,reat deal of flexibility Is provided throu7,h the use of
the macro facility (described in RX.1,01) of the cornnand
languaP,e. One very importa~t feature of this macro facility
ts that vdthin a macro r:!eflnltion a mixture of commands
Cl Ines acted upon by the Shel 1) anrl requests (tfiis Is the
most com:-:ion \\lord for 1 ines acted upon by Individual
Interactive pro1;rams) Is possible. Users vdll not normally
comrnuntcati directly with the debu~p;in~ pro~rams but use
macros defined in terris of the "bare-bones"· n~quests
descrihed in this anrl the following sections. A collection
of "system macros" \•lil 1 he defined, docuriented, and made
available so that the user will not have to know about the
full generality of the dehu~glng language unless he wishes
to def in e Mac ro s h i rise 1 f.

Notice

A number of points in this and the fol lo\\lln::; four· ,...Sections
(RX.10,00-RX.10,04) are Jntentionally vague because··at this
writin~ certain parts of -the SysteM are not completely
"nailed down." This is particularly true of the macro
facility. Intentionally v;igu(~ nolnts are marked with"*" in
the narg in.

Oehu~~inq; Facil it ie~

lnterro~ation: At an interruption or nor~al termination of
a nro~ram, the user nay interro~ate the values of variables
and the contents of nachine loc~tions; a rather complete
expression language makes it possible to conrluct these
lnterro~ations in terns of the source lan~uage of the
progran. For exar,ple if a user, noting sor1e peculiar
program output, hits the quit button while a PL/I pro~ram is

MULTICS SYSTEM-PROGRAr11'ERS' M.l\MUAL SCctton BX.10.00

,-... runntnr, and types the comnan~

probe

followed by the request to probe,

print a+b

PAGE 2

he means that prohP. is to find the storage assir,ned to the
variables a and b in the proeraM, add their values to~ether
In the same manner as a coMpiled PL/I program, and print the
result on the console.

RrP.aknoints: A user may specify that prof,ram execution ts to
he Interrupted upon the occurrence 6f certain (more or less
hardv,are-oriented) events such as control reaching a certain
point or a certain amount of ttMe betnp, used up. For
example a stanrlard macro nam~d tran could be defined i·1hich *
·makes arrangements so that the prov,ram \·lil 1 be Interrupted
when control reaches a certain point (label) in the program.
(This example ts enlarged upon in section BX.10.03) A user
would then type

trap sym

to cause execut ton to he Interrupted \'then control reached
the statement labelled syr~ in his program. Then the user
would start'up his pro~ram (probably with a cal 1 through the
Shell) anrl wait for the break to occur. When and if It did
occur (i.e. when and if control reached syrr,), he would·
perhaps type print requests and snoop around in the values
of variables at this point in the pro~ram's execution
exactly as if he had just hit the quit button as dlscussP.rl
above. Finally he might allow execution to be continued, by
typ Ing

proceed

or cause execution to he resumed at some other point, by
t YP 1 ng

t ran sfe r s yr,2

where syn2 is a statement label in the source program.

Tracing: Breakpoints nay he used in another way. The tracer
Conmand may be used to store up commands to he executed at
specific breakpoints so that what takes place at the break
ts automatic. A macro named~ nlp;ht he defined v1hich *
Causes the value of a variable to he printeo every 10
mill !seconds. (This Macro would contain the conmand
h r ~ a k e r , s e v e r a 1 re q u ~ s t s t o h r e a k e r , t h e c o mr.1 a n d t r n c e r ,
and aE;ain several requests. See the enlarp;er,ent of this
example in BX.10.03.) The user could then type,

MULTICS SYSTEt1_PROGRAMMERS' MANUAL Section RX.10.00 PAGE 3

mvar a+b

start his program hy a call through the Shell, and receive
the output

a+b
a+b
a+b
a+b

3.265
3.123
3.145
3.142

Interspersed of course with any output his program produces.

Process History: One of the actions which can be specified
to be performed at breakpoints is that of saving the state
of a process so that it can be restored later. One may for
example specify that the process state Is to be saved every
10 ms. Then for exanple when and If something goes wrong
In the program, probe requests can be used to hack
conditions up in time so that the user can search through
time for clues to what \-Jent \·.Jrong in the proeram.

L irnitat ions

The debugger is designed to he most convenient to users of
PL/I and the standard assembly lanf,uage. Users of algehraic
lan~uages other than PL/I, such as FORTRA~J IV, \'Jill have to
learn some new and occasionally confusing conventions, or
else supply a replacement for the expression-evaluating
machinery used by the debugging programs. Users of the
languap;es sonetiries unkindly called "oddball," such as
COMIT, LISP, f1YMAt10, ELl;'.A, an<l their llk, \•Jill find the
debur,ger as presently conceived less useful, although the
trace and breakpoint facilities v1ill probably see sor,e use
in connection with these languages. It seems unwise to
build in any aids to users of specific special-purpose
languages at this time since only an active user of LISP,
for example, can have any clear Idea of what facll itles are
useful in dehup;ginp; LISP programs.

Probe (described in RX.10.01) allows the user to examine and
modify machine conditions and the contents of his segments
using both machine- and PL/I-oriented fornats. This is the
core of any debugging a id. Consideruble experience has been
acquired in the matter of machine-oriented formats (e.g., ln
DOT, F/\POP.G, FAPr3UG, and Gl:Bllf1), hut hip;her-lanr.;uage
oriented formats are still in a rather primitive state.

Tracer (described in RX.10.02) provldes a conveni0.nt tracing
facility. In order to use it, the user inserts at strategic
points in a pro~ram cal ls to a certain entry in the tracer
comnand. Various ways of makinR these calls occur
automatically at specific events \•Jill be available, e.g. the

MULTICS SYSTEM-PROGRM-H-1F.RS 1 t-~At-lUAL Section RX.10.00 PAGE 4

hreaker and monitor commands and possibly a debug mode in
the compiler. The tracer command accepts requests \vhich
specify "Hhen a rr;urne nt 1 of the trace ca 11 is th us, do
this." ("Thts" may be any sequence of commands and requests
to comnands.)

The breaker command (described in BX.10.03) accepts requests
from a console or macro expansion to place a variety of
event breakpoints into a program. It makes arrangements
with the System to gain control whenever specified events
occur. Rreaker amounts to one way of causing trace calls to
occur automatically.

The monitor comman~ (described ln DX.10.04) accepts requests
from a console or macro expansion which indicate that
certain blocks of machine code are to he executed
Interpretively instead of being allowed to run free.
Whenever an "execution" access is made to such a block of
c ode , a t rap oc c u rs a n d an i n t e r p re t e r I s c a 1 1 e d • T he
interpreter calls the trace entry with appropriate arguments
after the execution of each machine Instruction.

The Dehup;ginp; Lanr;uar;e

An interactive pro,r;ram is an interpreter for a kind of
comr,uter lanr;uage--an "Interaction lan,r;uage" rather than a
"prop;ranmlng; lan,r;uage." The "debur;p;inp; language" described
here uses a number of the conventions of PL/I, e.~.1 the
form of expressions and the control functions il, else, do,
and end.

A request ts a 1 ine which is read and acted upon by one of
the programs probe, tracer, hreak~r, and monitor. (A better
word might he nrimitive, since the requests which are
actual 1 y seen by the pro.r;rams v,111 only rarely be typed by
the user at his console. As was mentioned earlier, they
will normally be used only In macro expansions.) A request
consists In general of the request name foll0\'1ed by
argur.1ents del tmited by bLrnks. Th2 conventions of the Rasic
Command Syntax (see BX .1. 0 0) a re foll ov,ed v1he reve r
applicable, especially \,,ith respect to the "Shell escape
character" and the semicolon convention.

Expressions

An expression is soMethin~ l Ike 11 a+b 11 or 11 sin(a)+6 11 which
can be evaluated to yield a value. F.xpressions are used in
the debugging language in references to variables in the
user's program and also wherever numbers, strings, etc. are
arr,urients to requests (as in the specification of loops, see
rlo request, bel0\·1). Symbols user! in these expressions ;:ire
normally i~entifiers fron the source pro~ram associated with
·the object prograM under exar1ination. It is absolutely
necessary that assemblers anrl compilers make available to

~-1ULTICS SYSTF.M-PROGRAt-H·iERS' MANUAL Section BX.10.00 PAG F. 5

the dehu,p;·ger the details of ·each compilation: this has *
traditionally been done vdth the "symbol table file," a 11st
of the identifiers defined by the prograrimer in the source
program and an indication of "v,hat \·rns done" in iriplernentinp;
that identifier. (The standard forMat for these symbol
tables is described in RD.2.)

A quick description of the debugging expression lanp;uage
would be that it is the PL/I expression lan~uage with the
values of express ions 1 imited to seal ars Ca PL/ I express ion
May have a vector or structure value) but with the addition
of the data type "address." (The data type "address" may
turn out to be identical in implementation to the PL/I data
type "pointer", but it seer,s \·1orthv1hlle to keep the two
concepts separate.) Expressions are divided into two
classes, "machine-oriented expressions" and "algebraic
expressions." The difference hangs primnrily upon whether
the "vnlue" of a symbol refP.rrE'!d to in the expression is
taken to be the address (if any) associated with the symbol
or the contents of the stornf!P. rn(Tion (ap;ain, if any)
associated \'/ith the symbol. The values of machine-oriented
expressions are not constrained to he addresses, since a
"contents" function ls part of the lan[';uage. This function
takes an address and returns its contents in the form of a
36-blt bit-string which may then be used In any of the usual
ways that hit-strings are used In PL/I expressions.

An alP;ehraic exon~ssion is onY val irl PL/I scalar expression
in \•lhlch the variables referred to come from. proP;rams
written in alr,ebraic lanp;uages such ;is PL/I or FORTRAM IV.
The value of a variable Is taken to be the contents of the
associated storage at the time expression evaluation takes
place. If the variable ls Internal to a (Pl./1) block v1hich
is not now active, the expre~slon-evaluating machinery
attempts to find its value at the last exit froM the block.
This lnforMation nay or may not currently exist, depending
for instance on the declaration of the variable (e.g. static
or automatic) and the strategy used for dynamic storage
allocation. The debugger attempts to find a symbol in any
of the symbol tables ft "knO\...,s about." A nuniber of
aMbigulties present thenselves: A name may be used for
variables in different ser,arately compiled programs or in
different blocks of the same program, and one variable may
have more than one generation active Ce.e. when a recursive
procedure calls itself) •. To provide a' notation for "this
symbol in this block," the question-nark (?) Is used. For
example "a?b" refers to the variable b In the block a. File
or segment names may be used in the same way as block n2nes.
if a block has no name, its nunher (counted 1 inearly throu~h
the source program) ts used instead, so that "a?c?3?b"
refers to the varl2ble b in the thlrr1 block Internal to the
block c Internal to the block a. In the case of a "multiply
active" variable Cone for ,...,hich more than one generation *
exists), the latest generation CrepresentinP, the deepest

MULTICS SYSTEt"-Pr.orrnJ\rWERS' t'NIU/1.L Section RX.10.00 PAGI:'. 6

recursion) \·Jill arbitrarily be userl.

A ma~hine-orienterl exoressinn is an expression in which the
"variables" r1re symbols from assembled source pro9;rams.
Here symbols reoresent either a<ldresses, base-offsets (such
as stack symbols), or Integers (symbols rlefinerl with sone
analov. of the SF.T pseudo-operation in FAP). Expression
syntax reriains that of PL/I. In order to allm1 the
expression of cor,pl icated ~oolean condlt Ions, such as those
needed In the specification of searches for nachine words
\</Ith certain content or effective arldress, sP.veral special
buil t-ln funct Ions are provided: the "content" funct ton ~,
the "effect tve adrlress" funct Ion ~, and the 8oolean
function safe \1hlch tells whether it ts "safe" to use the

· effect ive-adr1ress function. This 1 ast Is made necessary by
the fact that in the 645 there are nurrierous funny kinds of
tnrlirection that do not yielrl proper arldresses. The
"contents of register" function u recor;nlzes mnemonics for
special rep;lsters, so that for exanplP. "cr(a)" refers to the
contents of the accumulator as a 36-blt string.

The treatnent of the rlollar-slf;n {$) In de.,up;1.;ing
expressions Is sl l_p;htly <llffernnt frorii its treatment In
PL/I. It is an operator \•/hose precerllnr, operand is a
segment name, segment number, or base-register name anrl
whose follo\'llng operanrl ts an integer _p;lvlnP; relr:itlve
a rl d re s s • Th e re s u 1 t t s of co u r s e an a ,j d re s s • T h u s
"alphr:i$7" means location 7 in the sef,ment named alpha, !Jut
11 6$7 11 rn~;ms location 7 In segrrient nuriher 6.

"Mixed" expressions, those Hhlch lnclurie both alr;ehratc
ldentifiers r:inrl machine-orlenterl lrlentlflcrs, most
emphatically do not have an officir1l interpn:~tation. These
prohably will n()t cause r:in error conriltion but vlill he
lnterpreterl In some reasonably lntel 1 l~ent rianner, anrl may
be useful in some contexts; nothlnf; More will be said ;ibout
these here.

The Control neauests

The four p;irts of the debu~ger wtl 1 reco.r;n iv~, through a
corr-ion Interface, the control requests .Lf., el SP, r:io, an--1
enrl. The request

if conrlttion then r~guest

causes the request to he perforr,erl if
conditionr:il expression cvr:iluates true.

anrl
Then

only If thP.

causes the specified request to he perform~d If an~ only If
the conriltional expression in the last balanced lf request
evaluated false. The request

,...

MULTICS SYSTE~-•-PR0'1RAt111F.RS' MAMUAL S tction RX.10.00

do (same options as In PL/I)

causes requests following, up to a balanced

end

PAGF. 7

to be executed under control of the options specified
(options are loop-control sp~cificattons as in "do j=l hy 1
wh t 1 e a = b ; 11) •

In a QQ specification such as "rlo j= ••• 11 the v;,irlable
specified ts a "pseudo-variable" v,hlch ls to be spP.clally
set up for the purpose. The variable ls assigned a
data-type consistent with that of the value of the
expression to v1hlch It ls beinp; set, storap;-e is rissigned,
and the variable name Is placed In the syMbol tabl~. W~en
the ran~e of the do Is left, the storaP,'e ls freed and the
name removed from the symbol table.

In addition to the above requests, each of the four parts of
the debugger recoP,'nizes the request

exit

which means ~o return to the call ine program, normally the
She 11 •

....

