2
(‘_:‘,|
&

+3
-
(]
wn
wl

SYSTEM- PROGRAMMERS ' MANUAL SECTION BV.9.01 PAGE 1

“dentification

Multics Segment Library On-Line Information Base
Maltics Segment List (MSL)

Edwin W. Meyer, Jr.

Purpose

The Multics Segment List (MSL) is a data format for an on-line segment
containing information about a segment library. The MSL is designed
for on-line user interrogation, for conversion to ascii for printing
2s a2 hard-copy library listing, and for use with automatic library up-
date procedures, It is of sufficient scope os as to be useful under

a number of different mainterance philosophies.

Overview

An MSL is a set of segment information entfies referénced in two. ways:
() wvia a threaded list aphabetized by segment name; (b) wvia a hash-
coded list keyed by segment name. Each entry contains information con-

cerning one segment or other type of name.

The MSL uses LSM list structure format (MSPM BY.22) for speed and
efficiency in entry look-up and modification, It is not an ascii seg-
ment, although it does contain ascii blocks. Thus it can not be directly

printed.

MSPM

MSL Entry Format

[

SECTION BV.9.01 PAGE 2

h MSL entry consists of a l4 element node array plus various subsidiary

,SM data blocks, (See MSPM 3Y.22,0l for LSM da:a organization,) 1In

the description below, all items are character string blocks unless other-

17ise indicated,

“SM array Item
index Identification
0 name
1 type code

ju]

source instal

3 object instal
4 system id

5 who_auth

6 who_mod

7 area_use

8 document

9 A superior list

Description

segment or other name

(binary) name type (see BV.9, 02
for typq;code list)
installation date of source

for this segmeﬁt'

installation data of object for
this segment

id of system of installation
initials of author of segment
initiale of latest modifier

of segment

basic area of use for this segment
MSPM BS abstragt section

node address of top of threaded
list of superior MSL entries

(see below)

VISPM

LSM array
index

10

12

ey
W

Ttem
Tdentification

inferior lis:

proc_state

nxt_entry

SECTION BV.9.01 PAGE 3

Description

node adiress of top of threaded
list of inferior MSL entries
(see below)

ricde address of list of source
and object pathnames. (see below)
(binary'-used during update
processing

{(node address) pointer to next

entry in alphabetized list.

A superior/inferior list is a set of doubly threaded associative blocks

(one block per name combination) that link an entry to superior or

inferior entries., Each associative block is a 4 element node array of

the following format:

=3

sup_entry

inf_ entry

nxt_sup blk

next inf blk

(node address) pointer to the
superior entry of the combination
(node address) pointer to the
inferior entry of the combination
{node address) pointer to thé next
block in the superior list

(node address) pointer to the next

ist

et

block in the inferior

~T
it
.

Y

.’,‘5 ' . ':~) ?.‘ / : y
ié R § *‘J \> N\g\" SRS 1
[V .0 N

e

vl =

< f‘(".,._ \,\5 ,""\’*\ .
“'4\\ N\ £t

‘\L‘\u o M\\

Wﬁ-ﬁ--w G C.;f.i..?\{cp.:y,mn j_/\

‘ . B

. ST -t ; /M Q ~‘ "(~
'IC\A \ as® 2 ww\@@r r,,.Q_&- E H / \%m
el e s G TE

m &ﬁxxm?

e)

p— ———— S—— ——

\

e
| SR

Q0 F"\mr)mt/\

Aama sy sWATR A

S

L_ﬁ(\%\ .‘ /\‘()‘}’1 _é __.~ \- g

‘

i

M 3 ’ ‘
? J
{ ' -)
s — o —— PN, PUp—— t R . PU— rJ,... P [

T
r,
E.
if
;
3
(‘
é
2
z
?;
i
w7y
{
L)
i
S
55
it‘-
'p
=X
2
2l
2k
Y

"w:‘i‘) ' ;

> amgaxa L —f""f"mz{\lﬂ.ﬁ?\ o, Dould A Tlr - ol e
> .-} N by . | “?‘

LALRORA R / wm’v&x@ R R

ISPM

SECTION BV.9.01 PAGE &

When properly threaded, for each entry (j) in the superior list of an

ontry (A), that entry (A) is part of the inferior list of entry (j),

and vice-versa.

An example is illustrated in F.gure 1,

“he path list of an entry is a four element node array consisting of

the following paths:

Q

1

The entry type code

paths in
(a)
(b)
(c)

MSL List

source_path
object path

old;dir

info dir

one of the following ways:

not used

path of source segment

path of object segment

path of directory containing
previous source and object
path of info segment (currently
used for.locating bound segment

bind mar)

determires the interpretation of each of these

free segment - pathname of containing directory

archived segment - pathname of archive

Structure

The root
Ttem

C

of the MSL list structure is a four node 'root list':

Tdentification

alpha;list

hash_list

Description

(node address) pointer to the
top of the alphabetized list of
entries

(node address) pointer to the

hash list of entry names.

SPM o SECTION BV.9.01 PAGE 5

Item Identification Description
2 char hash (node aidress) pointer to a

hash 1ist of character strings
other than entry names. (Ensures
that only one physical character
block is created no matter how
many times it is used.)

3 typé;list (node address) pointer to a list
of items defining the various

type codes.

. . . . 0"
"type list' is a node array whose 'y'th node roints to an ''item list

defining type_code j.

"item.¥ist"is a 3-node array containing the following items:

0 type : 2-char type code
1 source_suffix suffix of source segment
2 path code L-element fixed binary array

specifying the interpretation to
be given the paths in the corre-
sponding array positions of 'path

list"

The following path codes are currently defined:
0 ’ this position not used
1 free segment - pathname of containing directory

2 archived segment - pathname of containing archive

