
r
I

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.3.00 PAGE 1

Published: 06/09/67

Identification

Overview of the Reserver
Robert R. Fenichel

Purpose

(,)

(2)

The Reserver provides a means for preallocating
system resources (that is, for making reservations),
and

The Reserver is responsible for allocating certain
resources at the time of use.

This document is primarily concerned with the reservation­
making function of the Reserver.

Organization Qf. ~ Section

This section is organized into nine subsections, as follows:

,. State-description of the Reserver
2. Reserver events and the Timetable
3. Making reservations
4. Benchmark events
5. Reservations which cannot be honored
6. Priorities of Reservations
7. Interface with the Accounting System
8. Interface with the Load Control System
9. Interface with the 1/0 System

1, State-description of the Reserver

At any given time, the Reserver has a single, central
idea of what the system consists of. This world-view
is called the state-descriptiop of the Reserver.

In many respects, a state-description resembles a dump
of the Registry Files (BF.3). In particular,

(a) The Reserver is aware of the existence of
certain fixed types of resources. The types
known to the Reserver will primarily be a
subset of those listed in the Registry Files
(~. 9-track tapes), but some non-Registered

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.3 0 00 PAGE 2

(b)

items may also appear. For example, one may be
able to reserve "access". This reservation
would not give one any devices, but it would
tend to preserve one from bumping. For a complete
accounting of the types known to the Reserver, see
BT.3.2.

For each type, the Reserver believes in the
existence of some number of instances of this
resource. The Reserver will believe, for example,
that there is some specific number of tape drives
on the machine.

According to installation policy, this number of
instances may be larger or smaller than the number
of actual devices known to the Registry Files.
Airlines expect no-shows, and reserve more seats
than they have; theaters hold house seats, and
reserve fewer seats than they have. In any case,
a reservation is a promise which has a non-zero
but hopefully small probability of being broken.

(c) The Reserver also holds the following control
information on a type-wide basis:

(1) May this resource be used without a
reservation?·

(2) What is the minimum permitted length of a
reservation for this resource?

(3) What is the maximum permitted length of .a
reservation for this resource?

(d) For each instance of each resource, the Reserver
performs a registry function. That is, it keeps
track of the disposition of the instance: Is
this instance now reserved? If so,

(1) By whom?

(2) For the purpose of describing his reservations,
by what name, if any, does this user know
this instance (~, "tape_drive_611)?

(3) With what physical device, if any, is this
instance associated (~, "tape_drive_S")?

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.3.OO PAGE 3

2, Reserver Eyents and the Timetpble

The Reserver's state-description changes through time.,
in accordance with discrete events whlch are set into
the Timetable. Care and feeding of the Timetable is the
central task of the Reserver.

Two sorts of events are recognized, admlnistr,tiye event§
and usrr events. Administrative events genera ly cause
type-w de parameters to be changeds number of known instances.,
minimum reservation length., etc. Administrative events
are described in BT.~.3.

User events are what the Reserver was made for. Each
user event either

(a) causes some instance to become reserved., or

{b) releases some instance from reservation.

The two types of user events are described in BT.3.4.

The Timetable ls built up as reservations are made and
as administrative edicts are issued. It is maintained
in such a way that the events may be scanned in order
of their intended occurrence. For more on the Timetable., 1

see BT .3.5.

3. Making Reseryations

A user will generally regard as a unit all those Reserver
events necessary to run a single Job. For example., a user
might wish

(a)

{b)

{c)

{d)

to reserve 6 tape drives.,
' forty-five minutes later., to reserve 1 disk-pack

drive.,

fifteen minutes later than that, to release 5
tape drives., and

ten minutes later than that, to release the disk
pack drive and the remaining tape drive.

r
MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BT.3.00 PAGE 4

This scheme will require 14 separate reserver events,
and yet the unity of the scheme is clear. The user may
not much care when the scheme is initiated, so long as
its parts have the specified temporal relationships to
each other.

Schemes like the one outlined above will be called reservation
groups. A user will be able to specify a reservation
group with a single ,£ill to the Reserver.

In the same call, the user must specify a name for the
reservation group. The user is not permitted to own two
pending reservation groups with the same name.

Finally, the user-s call must indicate a bracketing cglendar
Zeriod during which the reservation group may accepta ly
to him) be initiated. For example, the user might have

specified that the reservation group shown should be started
between 0900 and 1700 on April 1, 1968.

In order to fit the offered reservation group into the
Timetable, the Reserver simply simulates forward through
the Timetable, searching for a starting time within the
bracketing period such that the reservation group, if
started at that time, will not cause requests for instaneies
which are not available. ·

The mechanisms of specifying and inserting reservation groups
are described in BT.3.5.

4, Benchmark events

The simulation procedure Just described may be exorbitantly
time-consuming if the proposed reservation group ls in
the distant future. Benchmark eyentJ are available to
ease this problem.

A benchmark event may be administratively placed at any
point in the Timetable. This event causes no action whatever
when its time comes.

During simulation, however, each benchmark event encountered
is used as a repository for the current simulated state.
The simulation process can then be described as followsa

r

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.3.OO PAGE 5

1. Find a benchmark event set to "occur" shortly
before the bracketing period. Set the simulated
state from the contents of this event.

2.

3.

Simulate forward through the Timetable. up to
the start of the bracketing period.

Try to find a suitable reservation start~
within the bracketing period. A time tis
suitable if it is possible

(a) to pretend that the proposed reservation
group has been inserted into the Timetable
starting at t and suitably strung out.

(b) to simulate forward from t until reaching at
t' beyond the end of the reservation group
a benchmark event whose remembered state is
identical to the simulated state.

4. Alter all benchmark events between t and t' to
show the up-to-date anticipated states.

Benchmark events are described more fully in BT.3.3.

2, Reseryations Which Cannot be Honored

System resources may occasionally be overcommitted. so
that certain reserved facilities are not delivered. This

1

subsection is concerned with describing

(a) situations in which the Reserver will consider
itself to have failed to deliver as promised. and

(b) what the Reserver will do in those situations.

There are exactly two ways in which the Reserver can be
convinced of its own failure to honor a reservation.

(a) When an instance-reserving event occurs. the
Reserver may learn from the Registry File Maintainer
(BF.3) or some other real-world representation that
no such device is available. For example. it
might turn out that the Reserver contracted to
deliver a specific tape drive which was destroy~d
by fire Just before its intended use.

r

,..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.3.00 PAGE 6

(b) In order to ease congestion, the Load Control
Module (BQ.S) may bump a reservation-holder from
the system. For example 5 of the CPUs in a
6-CPU MULTICS might be simultaneously down.

In both these cases, the Reserver explicitly discovers
some unavailability, either of an explicitly desired resource,
or of general system access.

These cases of explicit unavailability must~ distinguished
from the case of improvidence. Perhaps7norder to make
effective use of a 12-tape, 2-hour reservation, a Job
needs at least 20 minutes of CPU time. Perhaps, too,
a typical user only gets 3 CPU minutes per hour. In this
case, the user reserving the 12 tapes should also reserve
some special CPU treatment. If he does not do this, he
has no claim against anyone but himself.

When a reservation cannot be honored, the Reserver really
doesn't do much about it. If the system is down for ten
minutes, it will hardly do to assume that all (or any)
pending reservations may be pushed ten minutes back.
Instead, the user is notified and, if he ls absentee,
the remainder of the reservation group is scratched.
In addition, an administrator is notified so that repayment
and reparation may be negotiated with the user.

6. Priorities of Reservations
I

Reservations which cannot be honored are a terrific embarrassment
to the Reserver. Bumping of one·reservation group by
another wi 11 be performed only by administrative intervention.
At the same time, it must be true that certain users should
get a better chance than others at making reservations
in the first place.

In order to satisfy these somewhat conflicting requirements,
the following scheme is useds

(a) A portion of the state-description ls the
Timetable horizon, which ls a calendar time in
the future.

(b) Proposed reservation groups whose bracketing
periods end before the horizon are accepted
via the simulation mechanism described above
and in BT.3.S.

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.3.OO PAGE 7

(c) When a user submits a reservation group with a
bracketing period not complete before the
timetable horizon, the simulation mechanism is
not used. Instead, the user's request ls placed
into a queue, one of several. The particular
queue which this user's reservation group enters
is specified in the user's profile.

(d) A special administrative event can cause the
horizon to be pushed forward.

(e) Another administrative event causes the queues
of (c) to be drained in a fixed order. Thus,
users whose profiles associate them with early­
to-drain queues stand a better chance of successfully
reserving popular and overdemanded resources.

7, Interface with the Accounting System

This interface ls described in BT.3.7. Its central notion
is that all policy decisions in this joint area are made
by the Accounting System (BO.3.O7). ·

An example may be useful. Consider the user who wishes tp
reserve $X worth of resources. ,

(a) What if his account is adequate? Should the
Reserver force him to tie up some funds
in a "certified check" account for $X?

(b) What if his account has less than $X in lt now?
Perhaps it wi 11 "probably" be recredi ted to at
least $X by reservation start time. But perhaps
this user has never seen that much money in his.
life. .

These questions are dodged by the Reserver. In general,
the Reserver solves its Accounting problems by telling
the Accounting system about almost everything that ever
goes on in the Reserver. Blown by the prevailing fiscal
winds, the Accounting system can react to the Reserver's

1

raw data with what action it (the Accounting System) sees
fit. In the initial implementation, the Accounting System
will ignore calls from the Reserver.

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.3o00 PAGE 8

8, Interface with the Load Control System

In order to allocate access to a finite system, the Load
Control System (BQ.5) maintains a ranking of all logged-in
process-groups. By manipulating certain threshholds,
the Load Control System determines which users may log
in and even, in some cases, which logged-in users must
be bumped from the system.

The Reserver, then, is interested in the following aspects
of this process:

(1)

(2)

(3)

(4)

The Reserver must inform Load Control's Process-Group
Ranker (PGR) at the time of the start of each
reservation group. In. this way, the PGR knows
to give reservation-holders special slots in
the ranking, so that few reservations will fail
to be honored.

The Reserver must further advise the Process-Group
Ranker of the relative merits of the several
reservation-holders. The system might be so
disabled as to be able to support only a proper
fraction of the current reservation-holders.

In the initial implementation, the Reserver
considers one reservation-group worthier than ·
another if the first was placed in the Timetable
before the second.

Out of respect for other users, the Reserver must
inform the PGR when a reservation-group has been
terminated. The PGR may then choose to reduce
the security-against-bumping of the former
reservation-holder.

If a reservation-holder .ll bumped, the Reserver
wants to know about it. This reservation-group
is now known to be one which the Reserver could
not honor, and the appropriate arrangements are
made.

9, Interface with the I/0 System

The Reserver stands as a sort of attach-verifier between
the I/0 System and the Resource Assignment Module. The

,,..
'

r

,.

MULTICS SYSTEM-PROGRAMMERS' M4NUAL SECTION BT.3.00

1/0 system, in response to an attach call which implies
that a device must be allocated to the user, makes an
al locate call to the reserver.

When an allocate call is made without a reservation
having been previously made,

PAGE 9

(a) The Reserver rejects the allocate, on the grounds
that this device must be reserved if it is to be
al located, or -

(b) The Reserver rejects the allocate, on the grounds
that this device is allocated to someone else, or

(c) The Reserver approves the fl locate.

When an allocate call is made after a reservation has
been made,

(a) The Reserver rejects the allocate, on the grounds
that this device is already y11ocated to another
reservation-holding user (th s means tha.t the
system has overcommitted itself), or

(b) The Reserver approves the allocate, bumping the
non-reservation-holding other user, if any.
Of course, if allocation is set to be impossible
without reservation, bumping will never be
necessary.

This interface is more fully described in BT.3.1.

