MULTICS SYSTEM PROGRAMMERS® MANUAL ~ SECTION BS.5.01 FPAGE 1
| | Published: 03/14/69

Identification -

1/0 Outer Calls (BF,1,00)
P.G., ‘Neumann, M.,A., Padlipsky

Note that the following calls are entry points to the 1/0
Switch (<iosw>), They are callable through the gate segment
<ios> (BS.0,03), ’ -

See BS,5.00 for declarations of the generic 1/0 arguments,
The definitions of the arguments are contained in the functional
descriptigns.below. ' . - '

$attach

- The attach call associates the given ioname (ionamel)
with a previously defined name or otherwise known device

- specified by ioname2. This association is meaningful
within the framework of the user”s process group, The
resulting attachment remains in force until removed by

a detach call (see below), A type and a mode (see the
chgnggm%d81ca11 below) are associated with the attachment,
See BF.1.01, ' - . :

call éttaCh(ionamel,type,ionaméz,mode,statQS);

~ $detach

The detach call removes for the given ioname(s) an association
established by an attach call, The disposal argument

indicates how dedicated resources (e.g., tapes and tape

drives) are to be treated, See BF.1.01.

call detach(ionamel, ioname2,disposal,status);

~ $changemode | B |

 The mode (specified by de)'bf an attachment describes
rel

certain characteristics ated to the attachment (e.g.,
readable; writable; appendable; random or sequentialﬁ-
1

if logical, linear or sectional). The gnggg%mggg cal
. permits mode changes to be invoked for the given ioname(s)
which modify the mode of the attachment, See BF,1,01.

- call changemode(ioname,mode,status);

MULTICS SYSTEM PROGRAMMERS * MANUAL SECTION BS.5.01 PAGE 2

etmod

The getmode call returns a terse encoding (bmode) of the

mode of : the attachment specified by the given ioname, '
This call is intended primarily for use by 10S modules.
See BF,1,01, (Design is tentative.)

call getmode (ioname,bmode,status);

$ readsync

'For a given valid ioname (i.e,, a name which has previously
been properly attached by means of an attach call), the
readsync call sets the read synchronization mode (rsmode)

of subsequent read calls (see below), This mode is either
synchronous or asynchronous, Synchrony implies that control
is not returned-to.the caller until the read request is

either physically initiated or physically completed, depending
upon whether the workspace synchronization mode (see the
worksync call below) is asynchronous or synchronous, respectively,
Asynchrony implies:that read-ahead is possible to the -
extent permitted by the limit argument, which points to

the desired maximum number of elements which may be read
ahead, The default mode is asynchronous, See BF,1.0u4,

call readsync(ioname, rsmode, 1imit,status);
$writesync

For a given (valid) ioname, the writesync call sets the

write synchronization mode (wsmode) of subsequent write

calls (see below). The mode is either synchronous or
asynchronous, Synchrony implies that control is not returned
to the caller until the write request is either physically
initiated or physically completed, depending upon whether

the workspace synchronization mode (see worksync) is
asynchronous or synchronous, respectively, Asynchrony ,

- implies that write-behind is possible to the extent permitted
by the limit argument, which points to the desired maximum
number of elements which may be written behind, The default
mode is asynchronous, See BF,1,04, :

‘call writesync(ioname,wsmode, 1imit,status);

$resetread

The resetread call is used to delete unused read-ahead
data collected by the I1/0 system as a result of read-ahead
associated with the given ioname, See BF,1,04, '

call resetread(ioname,status);

MULTICS SYSTEM PROGRAMMERS® MANUAL SECTION BS.5.01 PAGE 3

$resetwrite

The resetwrite call is used to delete unused write-behind'
data collected by the 1/0 system as a result of write-behind
associated with the given ioname, See BF,1.0k.

call resetwrite(ioname,status);

$worksync

For a given ioname, the worksync call sets the workspace
synchronization mode, The mode (wkmode) is either synchronous
or asynchronous, Synhchrony implies that control is not
returned to the caller until the I/0 system no longer

requires the user®s workspace (see d and ite calls
below). Asynchrony implies that some kind of initiation

of the call has taken place, although the workspace may

still be in use, The default mode is synchronous, See
BF.1.04,

call worksync(ioname,wkmode,status);
$iowait | |

For a given ioname whose workspace synchronization mode

is asynchronous, the iowait call defers the return of
control as if the workspace synchronization mode were
synchronous for the most recent read or write call or
for a specified previous call, The argument goldstatus

is the original status argument returned for the particular
previous transaction, and is used to identify that .
transaction uniquely, If oldstatus is missing, the most
recent transaction is implied., See BF,1.04, . -

call iOwait(ioname;oldstatus,status);

-$abort

When the workspace synchronization mode is synchronous,
the gbort call causes all outstanding transactions to

be aborted (oldstatus is ignored). When the workspace
synchronization mode is asynchronous, transactions are
aborted beginning with the one corresponding to gldstatus,
which contains the identification of an earlier call,
See BF,1,04, '

call abort(ioname,oldstatus,status);

MULTICS SYSTEM PROGRAMMERS® MANUAL SECTION BS.5.01 PAGE

$order

The order call is used to issue a request (request) to
outer modules, argptr points to a data structure containing
arguments relevant to the particular request. The call

is used for communication among I1/0 system modules, It

may also be used to set hardware device modes,

| call order(ioname, request,argptr,status);'

$getsize 'A ‘} | |

The getsize call returns the current element size (elsize)

associated with read and write calls for the given ioname,

See BF,1,05, | ‘ L
‘céll getsize(ioname,elsize,status);

L

The setsize call sets the element size (elsize) for subsequent

read and write calls with the given ioname, See BF,1,05,

$read

- The read call attempts to read into the specified workspace
- (starting offset items from the beginning of the workspace)
the requested number (pelem) of elements from the frame
specified by the given ioname, Reading begins with current
- item of frame, Thus for a linear frame, reading begins
with the element pointed to by the "read" pointer, Reading
is normally terminated by the occurrence of a read delimiter
or by the reading of nelem elements, whichever comes first.
The "read" pointer is moved to correspond to the element
“after the one last read., For a sectional frame Y, reading
begins with the first element (pointed to by the "read"

call‘setsize(ioname;elsize,status);

pointer for X) of the current subframe X, where the'currenf_

~subframe is that pointed to by the "current" pointer for
the frame Y of which X is a subframe, Reading is normally
terminated by the occurrence of the end of the subframe,
by the occurrence of a read delimiter, or by the reading
“of pelem elements, whichever comes first, The "current"
pointer for Y and the "read' pointer for X are moved to
correspcnd to the first element of the next frame X,

See BF 1,06,

call read(ioname,workspace,offset,nelem,nelemt,status);

MULTICS SYSTEM PROGRAMMERS® MANUAL SECTION BS.5.,01 PAGE 5

$write

The write call attempts to write from the specified workpace
(starting offset items from the beginning of the workspace)
the requested number (nelem) of elements onto the frame
specified by the given ioname, The number of elements
actually written is returned (nelemt). The behavior of

the write call with respect to the "write" pointer is
similar to that described above for the read call with
respect to the "read' pointer, except that there is no
write delimiter. Writing begins with the current item

of the frame, Thus for a linear frame, writing begins

with the element pointed to by the "write" pointer, Writing
is normally terminated by the writing of nelem elements,
The "write"pointer is moved to correspond to the element
after the last one written, For a sectional frame Y,
writing begins with the first element (pointed to by the
"write" pointer for X) of the current subframe X, where

the current subframe is that pointed to by the "current"
pointer for the frame Y of which X is a subframe, Writing
is normally terminated by the writing of nelem elements,
The "current" pointer for Y and the "write" pointer for

X are moved to correspond to the first element of the

next frame X, See BF,1,06,

~call write(ioname,workspace,offset,nelem,nelemt,status);
$setdelim

The setdelim call establishes elements which delimit data
read by subsequent linear read calls with the given ioname,
The argument breaklist points to a list of break characters
(containing nbreaks elements), each serving simultaneously
as an interrupt, canonicalization and erase~kill delimiters,
Break characters are meaningful only on character-oriented
devices, The argument readlist points to a list of read
delimiters (containing preads elements), The new delimiters
established by this call are in effect until superseded

by a subsequent setdelim call, See BF,1.06,

call setdelim(ioname,nbreaks,breaklist,nreads, readlist,
status);

etdelim

The getdelim call returns to the caller the delimiters
established by the most recent setdelim call, with the
arguments having precisely the same meaning for both calls,
See BF,1.06. :

call getdelim(ioname,nbreaks,breaklist;nreaas,readlist,
» status);

MULTIZS SYSTEM PROGRAMMERS® MANUAL SECTION BS.5.01 PAGE

- 3seek

-The s:cek call sets the reference pointer specified by
ptrnanel to the value of the pointer spec1f1ed by gtrnach
pius the value of a signed offset (if offszt is present)
ptriogmel may be "read', "writc", "last™ or "bound!, or

in the case of a sectional frdme "current!', "as=" or
”bound" ptrname?2 may be “read” "write'", "first", "last"
or "bound", or in the case of a sectioal frame, "current",
"first", "last" or "bound', For physical 1/0 (usxng the
readroc and writerec calls), ptrnamel may be "currentrec"
"last" or "bound', while ptrname2 may be '"currentrec",
"first!, "last" or "bound', The seek call is used to
‘truncate, e.g., seek(ioname,"last",b'last!,-u0d), or to

set the bound of the frame, e.,g., seek(ioname,"bound",
"last",27), In addition to its more traditional usage
involving the "read"' and "write'" pointers, e.g.,, seck
(ionanm,“read“,”write",-z). The "read" and "write" pointers
are also set as a result of read and write calls, respoctlvely
(see above), Each reference pointer refers to an item
number-, Which frame is referred to depends upon the type
argument of the attach call., See BF,1,06,

~zall seek(ioname,ptrnamel,ptrname?,offset,status);

$tell

The tell call returns the value of the pointer specified
by Q_fnamel as an offset (¢ffset) with respect to.the
given Qtrﬂdm€1, The arguments ptrnamel, ptrname? and.
offset have the same meanirg as in the seex call, As

an anmp}c the tell call may be used to obtain thp bound
of a frame by call tell(icrame,"bound","first",of fset).
See B .1.06,

call tell{ioname,ptrnamel,ptrname?,offset,status);
2™ ! F]

