MULTICS SYSTEM-PROGRAMMERS © MANUAL ~ SECTION BR.O.01 PAGE 1
Published: 12/6/66

Identification

Test and Diagnostic Philosophy
Harlow E. Frick

Purpose

This sectiocn describes some of the general design considerations
being taken into account on the on-line test and diagnostic
system for 645 Multics installations.

Introduction

The philosophy included in this section is quite geﬂora1
Test and Diagnostic philosophy as it relates to specific
equipment is further dlscussed in Section BR.2.00,

Definition

Test programs are defined as programs specifically written or
used to determine whether a system or some part of a system
is functioning properly.

Diagnostic programs are defined as programs specifically
written to help field engineers diagnose hardware failures.
There is no implication as to the amount or usefulness

of error output information provided by test programs

or diagnostic programs.

The Multics T and D System is defined as that part of

the 645 software designed to aid in detection and diagnosis
of hardware failures. The goal should be to implement

this software so as to maximize resource availability

and minimize user inconvenience in the event of harcdware
failures., The Multics T and D System will be specifically
designed for use on operating installations in the field.
The Multics T and D Svstem will consist of four parts;
Integrated tests, periodic tests, diagnostics, and utility
tiles, A resource has an 1nta0ra+ed test if when the
resource fails to perform properly this fact will be "immediately"
detected by a system or user processes and result in an
1nd1cauwon to the operator or fleld englnepr that something

is wrong. Where practical periodic tests will be developed

to test those resources which do not have complete integrated
tests. WYhen a failure is detected or suspected, the transactor
will turn the resource over to the diagnostic system.

If the field engineer so desires, he may run a diadgnostic
prodgram on tha resource in order to help him dwaﬂﬂvav

the failure. Utility files are defined as all files pointed

-y

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BR.C.C1 PAGE 2

to by the T and D Utility dnrectory They contain data

and procedure files required for controlling or maintaining
the T and D sys*em or for performing some useful function
for field engineers or diagnostic programmers. Utility
fi]es will be further defined as the need for them arises.

Test Philosophy

The hardware should be tested with integrated tests where
practical. This document describes some integrated tests

for which implementation plans have already been made

and recommends a few additional ones. However, recommendations
should not be construed as specifications. The definiticon

and inclusion of integrated tests, including error reporting
and recovery procedures, is the responsibility of the

system programmer designing the module in which the integrated
test should be included. :This is not to say, for example,

that d1agnosL1c system programmers will not eventually

define points in the system where automatic links to diagnostics
would bz feasible. The role of the diagnostic system

in the arca of integrated tests may become more important

after Multics is initially implemented.

“Where iﬂtegrated tests are not adequate (e.g., failures

in floating point arithmetic and cards panfhoc out of
registration) an attempt will be made to provide periodic

test programs. Periodic tests may be, but are not necessarily,
similar to diagnostics used for corrective maintenance.

The priority and period of pericdic tests are variables
for each resource and are adjustable by the field engineer.
The time required for a comp]ete test depends cn the component
being tested. Typical time for a test might be 20 seconds
for a printer test, and 60 seconds for a ﬂagn°tic tape
test which tests one device. (Time in this context is
the total time the device is allocated to the test.)
Neither integrated nor periodic tests are guaranieed to
etect 211 types of failures. Periodic tests may miss
intermittent failures. Also, no practical tests are known
for some types of solid fallures. However, even with
these deficiencies considered, integrated and periodic
tests are a very important part of the system because
customers will see a more reliable system, depending on
the degree to which failures are destected sooner than
they would be without integrated and periodic tests.

Diagnostic Philosorhy

Several dilagnosti approaches are possible, Diagnostics
may be on-line (i.e., run in the Multics environment),
or off-iine (i.e., have complete control of ithe system).

)

MULTICS SYSTEM-PROGRAMMERS ~ MANUAL SECTION BR.O.CT PAGE 3

Diagnostics may be of a conventional organization (e.g.,
test from least to most complex and usually make no attempt
at component board isolation), or they may depend on some
advanced diagnostic technique (e.g., test in a sequence

to minimize the number of tests, and attempt ccmponent
board isolation. Diagnostics may be oriented to testing

a single system component or to .several components simul-
taneously.

The type of diagnostic needed for a component is affected
by whether or not harcdware re-configuration is required
before the diagnostic is run. Therefore, let us categorize
failures as to whether they will require a major reconfiguration.
In this paper, a major re-configuration is defined as

any hardware reconfiguration except deletion of a component
(other than a system controller), or changing a peripheral
to another channel, or to another GIOC. The intent of

this definition is to include only hardware reconfiguration
which would temporarily disrupt operation to all users
while the reconfiguration was being done.

After a failure has occurred, major reconfiguration may

be required in order to inhibit the failed component from
causing deleterious effects on the good portion of the
system. Or, it may be necessary to re-configure in order
to positively determine which system component has failed.
Certain hardware failures will never require reconfiguration
during the process of diagnosis, repair, and operaticnal
verification. The reason these failures will never require
major recontiguraticn is essentially because their effect
may only be observed by a limited portion of the Multics
software and theretore, only this limited portion of the
Multics software is affected and isolation of the failures
to a specific device is usually accomplished simply by
detection of a failure by this limited portion of software.

The following failures will never require major reconfiguration.
These failures will henceforth be referred to as category :
A failures.

1. Failures in peripheral devices connected to a GIOC.
2. System clock failures.

3. EMM failures which are localized to specific EMM
addresses. '

The following fallures are more catastrophic than those
listed above. Any of these failures (henceforth be referred
to as category B failures) may require major hardware
re-configuration.

)

"MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BR.0.O1 PAGE 4

1. Processor failures

2. Memory failures

3. MSU failures (except as noted in category A)
L., GIOC failures

Generally Multics software, operator, or field engineer

can isolate category A fa’]ures to a specific compecnent.

It is reasonable to provide dlagnostxcs for category A
failures which are oriented to diagnosing the specific
component and which run in the Multics environment. This

type of dlagnostlc will be provided for category A failures

in the initial Multics T and D system and is further discussed
in section 8.0. The rest of this section is related to
diagnostics for category B failures.

When a category B failure occurs, we do not know how otten
or how reliably the system software, operator, or field
engineer can immediately determine which component has
failed. Therefore, upon detection of a category B failure,
the system may frequently attempt to recover by a procedure
similar to the following:

1. Type a message to the operator describing the
failure.

2. Generate a file containing a core image as unchanged
as possible from core when the failure was detected.

3. Abort the user who had the processor when the
failure was detected.

4. Log each user out temporarily.

5. Type a message to the operator requesting
re-configuration and Multics initialization.

The fo]]ow1ng method of re- con»lguratlon will most likely

be used on the M.I.T. hardware configuration, which censists
of 1 EMM, 2 processors, 2 GIOCs, and L system controllers.
First, opbration will be attempted using half of the system
plus the EMM. If this fails, operation will be attempted
using the other half of the system (other processor, GIOC,
and 2 system controllers) plus the EMM. If this fails,

the EMM is presumably tno culprit. The point is that,

on the M.I.T. system, excluding an EMM failure, any category
B failure will resu11 in an operational system available

to normal users plus a whole system which presumably has

B

MULTICS SYSTEM-PROGRAMMERS ~ MANUAL SECTION BR.O.0C1 PAGE 5

a failure in one of the major modules. The following
three ways of dizagnosing this system need to be seriously
considered,

1. Use the presently existing off line T and D system.

In many respects the off-line T and D system is not
very versatile and many of the error indications are
difficult to interpret. However, this system is
debugged, documented, and ava11ao1e and a crew of
programmers is busx]y improving it This system 1is
obviously going to be used until somethno better
comes along. On the M.I.T. configuration “and on
large systems in general, on-line diagnostics will
most likely make this system obsolete eventually,
but systems without backup modules will a]way> need
it. Therefore, continual imorovement and perhaps a
complete rep?acomenL of the off-1ine T and D system
is impor"tan+

2. Develop and use off-line diagnostics using fault
simulation techniques.

A fault simulation diagnostic consists of a diagnostic
program which generates a unique result for each possible
failure, or small group of failures, plus a dictionary

of unique results listed with the component failure, or
failures, which will cause this unique result. The
diagnostic is coded so as to minimize the number of
instructions which must be executed in order to cause a
unique result for each possible failure. More complicated
instructions and patterns are usually executed first.

The dictionary is generated by runnlng the diagnostic on

a logic simulator, inducing each possible failure into

the 1oglc being s1mu1ated and compiling the unique result
for each simulated fa1]ure into the dictionary.

The effectiveness and availability of fault simulation
techniques applied to the €45 are not presently known.
This project is apparently progre551ng with no major
problems., \Je should carefu]]y monitor progress, define
applicability to the 645 system, and definz 545 hardware
changes to aid in diagnostic resolution where fezsible,

3. Develop and use on-line diagnostics.

In parallel with detailed definition and implementation
of the initial Multics T and D system we should launch
a feasibility study to define diagnostics whnich should
be included in the final T and D system. This study

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTICN BR.0.OT PAGE ©

should include an early definition and implementation

of an on-line diagnostic system for either EMM, system
controller, processor, or GIOC. The tollowing comments
explain why we should not attempt to include any of
these diagnostics in the initial Multics T and D system.

a.

Periodic tests and peripheral diagnostics will be
available sooner because we can concentrate the
available manpower on thzm. The need for periodic
tests and peripheral diagnostics is immediate and
and fairly well defined.

To embark on a concentrated on-line diagnostic
effort at this time would involve either a parallel
effort on fault simulation diagnostics or a huge
effort on conventional diagnostics wnich might not
be needed if fault simulation techniques prove very
effective,

The advantage of on-line major module diagnostics

is debatable and not very well defined. The debate
and unclear definition will continue until we have
more information. We need to know what configurations
are going to be in the field. We need to know how
often the software, operator or field engineer, can
immzdiately determine which major module has failed. |
We need to know the effectiveness of fault simulation
diagnostics. We need to know how much further degra-
dation would be caused by using the operational part
of the system to diagnose the malfuncticning part.
This degradation could be considerable if conventional
diagnostics were used and if a large portion of the
system were suspect. For example, several system
controllers, 1 processor and 1 GICC might all be
suspect. A

Problems related to protecting the operational porticn
of the system frem the malfunctioning part need further
investigation. '

Test and Diaanostic lanauages

Procedures in the test and diagnostic system may generally
be categorized as control procedures or test procedures.
Test procedures include periodic tests and diagnostics.
Control procedures include:

Test and diagnostic demon

Equipment periodic test scheduler

Test and diagnostic message co-ordinator
Test and diagnostic command processors
TDL compiler

MULTICS SYSTEM-PROGRAMMERS * MANUAL ~ SECTION BR.O.CT PAGE 7

Control procedures should be coded in EPL unless there

is a valid reason for not doing so. Test and diagnostic
procedures should be coded in TDL if practical; otherwise
"they should be coded in EPL or 645 assembly language depending
on which is most convenient.

TDL is a test and diagnostic language which will be avallable
in the Multics environment. 1t is specifically oriented
toward testing common peripheral type I O devices. This
language should be machine independent and should be similar
or identical to the DIAL language being developed for

the Computer Equipment Department manufacturing section.
Extensions to, or other versions of, this language should

be considered for test and diagnosis of communications
equipment, EMM, and processor.

The following introduction to DIAL has been copied from
the Engineering System Spec (Timeshared Peripheral Unit
Test System) which was prepared by Dick Hoehnle in May

1965, '

The acronym DIAL stands for Diagnostic Language. It

is a compiled language suitable for peripheral testing.
It is flexible and powerful, placing few restrictions
on the most uninhibited user.

The source language (user) is divided into lines and
subdivided into fields. The fields are, in most cases,
reduced to subfields. The fields consist cf mnemonics
which represeat peripheral operations, data manipulation
operations, error checking operations, and looping
operations. A typical source language statement will
appear as:

01 PWTB;TLC,1,99;PREW; PRTB; TLFC, 1,4,99;END

The line number will be furnished by the user. Once a
Tew simple techniques are committed to memory, this
language becomes very easy to use., First, fielcs are
separated by (;) and represent an operation. Hence the
first field (PWTB) is the operation "virite Tape Binary'.
Peripheral operations will always use the standard
mnemonics found in the Department programming manuals,
preceded by the letter P.

The (Py/TB;) results in all errof checking being done to
a standard. This would normally be ready status, terminate
interrupt, and operations completed within specified time
limits. The standard table will be referred to fcr all

- peripheral operations and will not be changed unless the
operator specifically causes it to be.

-y

'MULTICS SYSTEM-PROGRAMMERS * MANUAL ~ SECTION BR.C.OT PAGE &

The next field (TLC1,99) in our example is divided into
subfields by commas which leads us to Definition 2 --
fields will only be subdivided by commas. This field
consists of a]pn -numeric and numeric data. The alpha-
numeric will always precede the numeric. The (TLC)
represents Transter to Line on Count. The first character
represents the class of instruction and the latter 2
describe the numeric fTields that follew. First numeric

field equals field and second count. Uhat this instruction
says is -- loop to line 1 if the count is less than C9.

Ctherwise, continue to the next field. The count will be
incremented once each time this instruction is encountered.

Hence, we are going to write 100 records cn mag tape.
Wlhen the count is reached, we go to the next field, which
is the mnemonic for Rewind followed by Read Tape Binary.
The next transfer instruction functions exactly like the
first one with the exception that cne extra subfield has
been added. It is translated as "Transfer to line 1,
field 4, if the count is less than ¢39". This enables

us to go directly to the PRTB and read the 100 records
Just written. END is obvious, as the end of the program.

Thus, it can be seen that with this onz simple line of
code, the operator can generate a prograﬂ that would
norma]]y requwre several hundred]Wnos of machines languace
code to perform the samz job.

User Privacy

The field engineer occasionally has some need to perform
operations wnich could give him access to prxva+e user

files. However, the assurance of user privacy is usually

more imoortant than this need, and therefore, the test

and dwagnoc’fm system must be’ designed in a manner which

will normally protect user privacy. As the test and diagnostic
system is designed and implemented, weaknesses in the

system wnich might allow either intentlona1 or unintentional
violation of user privacy will be searched for. These

weaknesses will be removed if practical, or reported i
it should not be practical to remove them.

£z
[

The following comments are intended to illustrate how
user privacy will be protected from the diagnostic user.

1. A diagnostic user will not have access to routines which
give him indirect access to restricted informztion. For
example, he will not have access to a rcutine which he
may use in order to read or write into all core locations.
He may, however, be able to read or write into specific
core locaticns which he has been allccated.

N

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BR.O.C1 PAGE ¢

2. The diagnostic user will normally have access only to
the following files:

a. Files which are accessible to all ordinary
users

b. Files in the diagnostic user directory
c. Files in his own private directory

d. Files specified by other users as accessible
to diagnostic users

3, When a system process detects incorrect data transmissions,
the data transmitted will not normally be reported. For
example, if an unrecoverable read error occurs on a ftile
system device, the data read and/or the data which should
have been read will not be unconditionally reported to
the field engineer. However, suppose an unrecoverable
read error has occurrod on an EMM and the field engineer
would like to re-read the "unreadable" record and/or
print the data read. The system may be designed such
that the field engineer always has authority to do this
on records which do not contain private date, but must
obtain approval of the system administrator to do so on
records which may contain private data.

System protection from diaagnostic users

An important feature of the on-line test and diagnostic
system is protection of the operational system from blunders
made by diagnostic users. The following comments are
intended to illustrate the extent to which tnls protection
will be accomplished.

1. It would be unwise to give the diagnostic user unlimited
authority to use system resources, except as required
in order to test and diagnose equipment problems
Therefore, the diagnostic user will log in using an
account which has a moderate amount of system resources
available. This is a normal account in that it 21lows
access to procedures and data which are available to
other ordinary users and it may be adjusted so as to
cause special reports or automatic abortion From the
system when it is overdrawn. The amount of drum or disc
space may ke limited and there may or may not be ability
to use additional resources via standard reguests to the
transactor. VWhen the diagnostic user starts a test or
diagno<Lic routine, the account number is automatically
changed to one of Several diagnostic accounts. These
accounts may be overdrawn to any degree without causing
the program to be aborted.

MULTICS SYSTEM-PROGRAMMERS * MANUAL ~ SECTION BR.0.Of PAGE 10

2. Peripheral devices are allccated to the diagnostic
system by making standard requests to the transactor.
An out of service flag exists for each device wnich
may be allocated to the test and diagnostic system.
If the flag is set, the device may be allocated only
to a diagnostic account. If the flag is reset, the
device may be allocated only to a non-diagnostic account.
The field engineer will probably have authority to
execute a command which may be used to set or reset the
out of service flag. :

System resource de-allocation

Many situations will arise at a Multics installation which
will require that a particular component be temporarily
deleted from system use,

In the context of this section, a component is defined
as any of the following.

1. Processor
2. GIcC
3. EMM
‘L, Memory controller plus all of its contained core.
5. Any device connected to a GIOC.
6. Any channe which is connected to multiple devices,
The following list is intended to illustrate the variety
of situations which might require that a specific component
be temporarily deleted from the system.
1. An engineering change is to be installed.
2. Preventive maintenance is to be done.
3. A particular comporent is suspected of causing
deleterious effects on the system. Temporary
disuse of this component is required to see if

the problem stops occurring.

L. The component is temporarily required on another
system. _ ’

5. The compcnent malfunctions and is to be diagnosed
‘ and/or repaired off line.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BR.0O.O1 PAGE 11

6. The component malfunctions and is to be diagnosed
with an on-Tine diagnostic. The diagnostic must
have complete control of the component and therefore
the Multics software must stop using it.

7. The component is to be physica11y moved.

There are two basic ways in which the system may stop
using a component. The first way is to:

1. Log each user out.

2. Force latest copies of all segments onto EMM or’
disc storage.

3. Type a message indicating that the system is shut
down,

L, Bootlecad the system and initialize in a configuration
which does not include the component which is to pe
deleted,

YInen the above method is used, a similar procedure must
be repeated when the component is added back into the
system,

The second method can be summarized as follows. Each

component has an out of service flag and an out of use

flag. The field engineer will prcbably have authority

E? execute a command to set or rest the out of service
ag.

The out of service flag getting set signals the system

to stop using that component. The system may require
several milliseconds to stop using the component (in the
case of a processor) or several minutes (in the case of

the EMM where files must be copied to other file system
devices.) When the system has stopped using the component
it sets the out of use flag and outputs a message indicating
that the component is not being used. The cut of service
flag getting reset signals a system process to reset the

out of use bit and start using the component. Implementation
of this method for various compcnents might be categorized
as ftollows,

Should definitely be implemented for:

A11 peripheral devices connected to a GIOC except the
disc.

MULTICS SYSTEM-PROGRAMMERS © MANUAL ~ SECTION BR.O.O1 PAGE 12

Should probably be implemented for:

EMM

Procéssdr

GIOC

Lisc

Any channel connected to multiple devices
Should probably not be implemented for:

System controllers

The following examples are intended to illustrate how
this mechanism might work in more detail.

Example 1 - System process or user executes a command
to stop using processor 2.
1. A routine is entered which sets the processor 2
out of service flag and wakes up a routine which
initiates action to stop using processor 2.

2. A1l processor 2 actions except interrupt processing
are Inhibited by placing @& high priority procass In
the ready list which must run on processor 2 and
which executes a DIS instruction. After this
process is placed in the ready 1ist, the process
currently running on processor 2 is pre-empted,

3. Interrupt processing by processcr 2 is inhibited
by (a) masking off all interrupts from all system
controllers vwhich direct interrupts to processor 2,
(b) typing instructions to the operator to switch
the control port for each applicable system controller
and (c) restoring the applicable system memory.
controller mask registers to their original values.

L. The out of use flag for processor 2 is now set and
a message is typed indicating that processor 2 is
not being used,

Example 2 - Preventive maintienance is to be scheduled
on a peripheral device, ' .

This may be done in either of two ways: The first way
1s to schedule the peripheral device using a standard

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BR.(G.01 PAGE 13

transactor scheduling request The planned reservation
facility of the transactor ma be used in order to schedule
preventive maintenance on a fixed cyclic basis. Or, the
request may be on an as needed basis. The disadvantage

of this method is that maintenance may be required con

a higher priority basis and the normal transactor requests
don’t overrids existing reservations previously made by
other users. Therefore, the following mechanism will

be available when it is necessary to acaquire a peripheral
device for preventive maintenance on a high priority basis.

A facility to set or reset an out of service flag will

be provided for each peripheral device. This flag signals
the system to stop using that peripheral device. Normally
the user who 1is currently using the device will be allowed
to finish his job. However, a provision must be included
to interrupt operation to get some peripherals which are
rather permanent]y assigned, like card readers, or tapes

assigned to the file system. At any rate, when the process

using the peripheral releases it, the out of use flag

will be set and a message 1nd1caL1ng this will be printed.

Implementation phases

The Multics T and D System will be implemented in two

or more phases. The first phase, herzafter called the

initial Multics T and D system, should be completely implemented
by the time Multics is available for commercial use.

The second phase hereafter called the final T and D system,

may be implemented in several steps. The important point

is that after the initial multics T and D QyStem is implemented
it must be possible to implement the final T and D system
without major changos to ex15t1ng Multics system modules.

This means that, wherever possible, test and diagnostic
considerations must be defined and 1mp‘ewentod in tne

Multics system modules initially, not added in later.

The initial Multics T and D system shculd consist of the
following on-1ine T and D programs plus the off-line T

and D system. (The presently existing off-line T and

D system is described in section BR.1.)

1. A program to control user console input, compilation,
and execution of a newly developed version of TDL.
DL is a symbolic Test and Diagnostic Language somewhat
similar to MAD.

2. Periodic test programs for:

Processor
Card Punch
Card Reader
Printer
Magnetic Tape
DSU 250

"MULTICS SYSTEM-PROGRAMMERS © MANUAL ~ SECTION BR.0.01 PAGE 14

3. Diagnostics for Card Punch, Card Reader, Printer,
Magnetic Tape, and DSU250,

L, A limited EMM diagnostic (generally described in BR.,2.0C)
: The Tinal T and D system should consist of the initial
Multics T and D system plus diagnostics for processors,
GIOCs, memories, and EMMs where feasible and useful. _
Additional periodic tests and diagnostics for peripheral
equipment should also be included in the Tinal T and D
system. E

