
,...

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BR.0.01 PAGE 1

Published: 12/6/66

Identification

Test and Diagnostic Philosophy
Harlo'J,J E. Frick

Purpose

This section describes some of the general design considerations
being taken into account on the on-line test and diagnostic
system for 645 Multics installations.

IntroductJon

The philosophy included.in this section is quite general.
Test and Diagnostic philosophy as it relates to specific
equipment is further discussed in Section BR.2.00.

Definitions

Test programs are defined as programs specifically written or
used to aetermine whether a system or some part of a system
is functioning properly.

Diaanosti~ programs are defined as programs specifically
written to help field engineers diagnose hardware failures.
There is no implication as to the amount or usef~lness
of error output information provided by test programs
or diagnostic programs. ·

The Multics T __ and D ~stem is defined as that part of
the 645 software designed to aid in detection and diagnosis
of hardware failures. The goal shoDld be to implement
this software so as to maximize resource availability
and minim5.ze user inconvenience in the event of hard,,i!are
failures. The Multics T and D System will be specifically
designed for use on operating installations in the field.
The Multics T and D System will consist of four parts;
Integrated tests, periodic tests, diagnostics, and utility
files. A resource has an inteorated test if when the
resource fails to perform properly this fact If.Jill be 11 immediately11

detected by a system or user processes and result in an
indication to the operator or field engineer that something
is wrong. Where practical 2eriodjc tes~s will be developed
to test those resources which do not have complete integrated
tests. When a failure is detected or suspected, the tra~sactor
will turn the resource over to the diagnostic system.
If the field engineer so desires, he may run a diaanostic
Qr.PO rpnJ on th 2 resou 1-ce in order to he 1 p him d 5.agnose
the failure. Utility files are defined as all files pointed

,.
I

MULTICS SY~ TEM-PROGRAMMERS' MANU.l\L SECTION BR.0.01 PAGE 2

to by the T and D Utility directory. They contain data
and procedure files required for controlling or maintaining
the T and D system or for performing some useful function
for field engineers or diagnostic programmers. Utility
files will be further defined as the need for them arises.

Test Philosophy

The hardv1are should be tested 1.rJ:i.th integrated tests where
practical. This document describes some integrated tests
for which implementation plans have already been made
and recommends a fev.r additional ones. Hov1ever, recomrnendat ions
should not be construed as specifications. The definition
and inclusion of integrated tests, including error reporting
and recovery procedures, is the responsibility of the
system programmer designing the module in which the integrated
test should be included. ·This is not to say, for example,
that diagnostic system programmers will not eventually
define points in the system where automatic links to diagnostics
1:11ould be feasible. The role of the diagnostic system
in the area of integrated tests may become more important
after Multics is initially implemented.

Where integrated tests are not adequate (e.g., failures
in floating point arithmetic and cards punched out of
registration) an attempt will be made to provide periodic
test programs. Periodic tests may be, but are not necessarily,
similar to diagnostics used for corrective maintenance.

The pr ior:t ty and p1~r iod of per icd ic tests are variables
for each reso~rce and are adjustable by the field engineer.
The tim2 required 'for a complete test depends on the component
being tested. Typical time for a test might be 20 seconds
for a prjnter test, and 60 seconds for a magnetic tape
test which tests one device. (Time in this context is
the total time the device is allocated to the test.)
Neither integrated nor periodic tests are guaranteed to
detect all types of failures. Periodic tests may miss
intermittent failures. Also, no practical tests are knqvm
for some typ'::!s of solid failures. Hov12ver, even v-1:i.th
+h ' ,.. d d . · · d 1 • d . ~ ese aeT1c1enc1es cons1 ere, integrate anc per10 1c
tests are a very important part of the system because
customers will see a more reliable svstem, depending on
the degree to which failures are detected sooner than
they would be without integrated and periodic tests.

Diaanostic Philosoohy

Several diagnostic approaches are possible. Diagnostics
may be on-line (i.e., run in the Multics environment),
or off-line (i.e., ~ave complete control of the system).

r

r

MULTICS SYSTEM-PROG~AMMERS' MANUAL SECTION BR.0.01 PAGE 3

Diagnostics may be of a conventional organization (e.g.,
test from least to most complex and usually make no attempt
at component board isolation), or they may depend on some
advanced diagnostic technique (e.g., test in a sequence
to minimize the number of tests, and attempt component
board isolation. Diagnostics may be oriented to testing
a single system component or to .several components simul­
taneously.

The type of diagnostic needed for a component is affected
by ll'Jhether or not hardware re-configuraU.on is reql!ired
before the diagnostic is run. Therefore, let us categorize
failures as to whether they will require a major reconfi~uration.
In this paper, a major re-configuration is defined as
any hardware reconfiguration except deletion of a component
(other than a system controller), or changing a peripheral
to another channel, or to another GIOC. The intent of
this definition is to include only hardv!are reconfiguration
~,ich would temporarily disrupt operation to all users
\nJh i 1 e the re con f i gu ration v;as being done.

After a failure has occurred, major reconfiguration may
be required in order to inhibit the failed component from
causing deleterious effects on the good portion of the
system. Or, it may be necessary to re-configure in order
to positively determine which system component has failed.
Certain hardvJare failures vJi 11 never require t~econfigurat:ton
during the process of diagnosis, repair, and operational
verification. The reason these failures v,Ji 11 never req~ire
major reconfigurat :.on :ts essentially because thei.r effect
may on 1 y be observ.ed by a 1 5.m ited port :ton of the [·-\ult ics
software and therefore, only this limited portion of the
Multics software :ts affected and isolation of the failures
to a specific device is usually accomplished simply by
detection of a failure by this limited portion of software.

The following failures will never require major reconfiguration.
These failures vJi 11 henceforth be referred to as ~ateoon,
fl fa i 1 u res.

1. Failures in peripheral devices connected to a GIOC.

2. System clock failures.

3. EMM failures which are localized to specific EMM
addresses.

The fol lovi:tng failures are more catastrophic than those
listed above. Any of these failures (henceforth be referred
to as c~teqory B failures) may require major hardware
re-configuration.

'

·MULTICS SYSTEM-PROGRAMMERS' MANU.L\L SECTION BR.0.01 PAGE 4

1. Processor failures

2. Memory failures

3. MSU failures (except as noted in category A)

4. GIOC failures

Generally Multics software, operator, or field engineer
can isolate category A failures to a specific component.
It is reasonable to provide diagnostics for category A
failures which are oriented to diagnosing the specific
component and which run in the Multics environment. This
type of diagnostic will be provided for category A failures
in the initial Multics T and D system and is further discussed
in section 8.0. The rest of this section is related to
diagnostics for category B failures.

When a category B failure occurs, we do not know how often
or hovJ reliably·the system soft\rJare, operator, or field
en~ineer can immediately determine which component has
fa1led. Therefore, upon detection of a category B failure,
the system may frequently attempt to recover by a procedure
similar to the following:

1. Type a message to the operator describing the
failure. · ·

2. Generate a file containing a core image as unchanged
as possible from core \l'Jhen the failure v-Jas detected.

3. Abort the user who had the processor when the
failure \rJas detected.

4. Log each user out temporarily.

5. Type a message to the operator requesting
re-configuration and Multics initialization.

The following method of re-configuration will most likely
be used on the M.I.T. hardware configuration, which consists
of 1 EMM, 2 processors, 2 GIOCs, and 4 system controllers.
First, operation will be attempted using half of the system
plus the EMM. If this fails, operation will be attempted
using the other half of th~ system (other processor, GIOC,
and 2 system controllers) plus the EMM. If this fails,
the EMM is presumably the culprit. The point is that,
on the M.I.T. system, excluding an EMM failure, any category
B failure will result in an operational system available
to normal users plus a whole system which presumably has

,..
I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BR.0.01 PAGE 5

a failure in one of the major modules. The following
three 1:vays of diagnosing this sys tern need to be seriously
considered.

1. Use the presently existing off line T and D system.

In many respects the off-line T and D system is not
very versatile and many of the error indications are
difficult to interpret. However, this system is
debugged, documented, and available; and a crew of
programmers is busily improving it. This system is
obviously going to be used until something better
comes along. On the M.I.T. configuration and on
large systems in general, on-line diagnostics will
most likely make this system obsolete eventually,
but systems 1rJithout backup modules v1ill al\t-1ays need
it. Therefore, continual improvement and perhaps a
complete replacement of the off-line T and D system
is important.

2. Develop and use off-line diagnostics using fault
simulation techniques.

3.

A fault simulation diagnostic consists of a diagnostic
program wl1ich generates a unique result for each possible
failure, or small group of failures, plus a dictionary
of unique results listed with the component failure, or
failures, which will cause this unique resu.lt. The
diagnostic is coded so as to minimize the number of
instructions which must be executed in order to cause a
unique result for each possible failure. More complicated
instructions and patterns are usually executed first.
The dictionary is generated by running the diagnostic on
a logic simulator, inducing each possible failure into
the logic being simulated, and compiling the unique result
for each simulated failure into the dictionary.

The effectiveness and availability of fault simulation
techniques applied to the 645 are not presently known.
This project is apparently progressing with no major
problems. 0e should carefully monitor proaress, define
appl icabi 1 ity to the 61+5 system, and define 545 hardv1are
changes to aid in diagnostic resolution where feasible.

Develop and use on-line diagnostics.

In parallel with detailed definition and implementation
of the initial Multics T and D system we should launch
a feasibility study to define diagnostics which should
be included in the final T and D system. This study

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BR.0.01 PAGE 6

should include an early definition and implementation
of aA on-line diagnostic system for either E~~. system
controller, processor, or GIOC. The following comments
explain why we should not attempt to include any of
these diagnostics in the initial Multics T and D system.

a. Periodic tests and peripheral diagnostics will be
available sooner because we can concentrate the
available manpower on them. The need for periodic
tests and peripheral diagnostics is immediate and
and fairly well defined.

b. To embark on a concentrated on-line diagnostic
effort at this time would involve either a parallel
effort on fault simulation diagnostics or a huge
effort on conventional diagnostics which might not
be needed if fault simulation techniques prove very
effective.

c. The advantage of on-line major module diagnostics
is debatable and not very well defined. The debate
and unclear definition will continue until we have
more information. We need to know what configurations
are going to be in the field. We need to know how
often the software, operator or field engineer, can
immediately determine which major module has failed.
We need to know the effectiveness of fault simulation
diagnostics. We need to know how much further degra­
dation would be caused by using the operational part
of the system to diagnose the malfunctioning part.
This degradation could be considerable if conventional
diaanostics were used and if a laroe portion of the
sysfem were suspect. For example,~several system
controllers, 1 processor and 1 GIOC might all be
suspect.

d. Problems related to protecting the operational portion
of the system from the malfunctioning part need further
investigation.

Test and Diaanostic languaaes

Procedures in the test and diagnostic system may generally
be categorized as control procedures or test procedures.
Test procedures include periodic tests and diaanostics.
Control procedures include: ~

Test and diagnostic demon
Equipment periodic test scheduler
Test and diagnostic message co-ordinator
Test and diagnostic command processors
TDL compiler ·

MULTICS SY.STEM-PROGRAMMERS" M.ti.NUAL SECTION BR.O.C1 PAGE 7

Control procedures should be coded in EPL unless there
is a valid reason for not doing so. Test and diagnostic
procedures should be coded in TDL if practical; otherwise

·they should be coded in EPL or 645 assembly language depending
on which is most convenient.

TDL is a 1es t and f!_iagnos tic language 1tJh ich vJi 11 be avail ab 1 e
in the Multics environment. It is specifically oriented
toward testing common peripheral type IO devices. This
language should be machine independent and should be similar
or identical to the DIAL language being d2veloped for
the Computer Equipment Department manufacturing section._
Extensions to, or other versions of, this language should
be considered for test and diagnosis of communications
equipment, EMM, and processor.

The following introduction to DIAL has been copied from
the Engineering System Spec (Timeshared Peripheral Unit
Test System) which was prepared by Dick Hoehnle in May
1966. .

The acronym DIAL stands for Diagnostic language. It
is a compiled language suitable for peripheral testing.
It is flexible and pov1erful, placing fevv restrictions
on the most uninhibited user.

The source language (user) is divided into lines and
s~bdivided into fields. The fields are, in most cases,
reduced to subfields. The fields consist of mnemonics
which represe~t peripheral operations, data manipulation
operations, error checking operations, and looping
operations. A typical source language statement will
appear as:

01 P\rJTB; TLC, 1, 99; PRE\rJ; PRTB; TLFC, 1,L~ ,99; END

The line number will be furnished by the user. Once a
few simple techniques are committed to memory, this
language becomes very easy to use. First, fields are
separated by(;) and represent an operation. Hence the
first field (P\'!TB) is the operation "Virite Tape Binary".
Peripheral operations will always use the standard
mnemonics found in the Department programming manuals,
preceded by the letter P.

The (PV!TB;) results in all error checking being done to
a standard. This would normally be ready status, ·terminate
interrupt, and operations completed within specified time
limits. The standard table will be referred to for all
peripheral operations and will not be changed unless the
operator specifically causes it to be.

,...

,..
I

·MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BR..O.O1 PAGE 8

The next field (TLC1,99) in our example is divided into
subfields by commas which leads us to Definition 2 -­
fields will only be subdivided by commas. This field
consists of alpha-numerit and numeric data. The alpha­
numeric will always precede the numeric. The (TLC)
represents Transfer to Lin~ on Count. The first character
represents the class of instruction and the latter 2
describe the numeric fields that follow. First numeric
field equals f J.eld and second count. ':!hat this instruction
says is -- loop to line 1 if the count is less than 99.
Otherwise, continue to the next field. The count will be
incremented once each time this instruction is encountered.

Hence, we are going to write 100 records on mag tape.
When the count is reached, we go to the next field, which
is the mnemonic for Rewind followed bv Read Taoe Binarv.
The next transfer instruc~Hon functions exa·ctly like th-e
first one with the exception that one extra subfield has
been added. It is translated as 11 Transfer to line 1,
field ri, -i-f the count is less th2.n 9911 • This enables
us to go directly to the PRTB and read the 100 records
just \•Jr it ten. EN.Q is obvious, as the end of the program.

Thus, it can be seen that with this one simple line of
code, the operator can generate a program that would
normally require several hundred lines of machine language
code to perform the same job.

User Privacy

The field engineer occasionally has some need to perform
operations which could give him access to private user
f i 1 es. HO\,vever, the assu ranee of user privacy is usua 11 y
more important than this need, and therefore, the test
and diagnostic system must be designed in a manner which
will normally protect user privacy. As the test and diagnostic
system is designed and implemented, weaknesses in the
·system which might allow either intentiorial or unintentional
violation of user privacy will be searched for. These
\veaknesses 1.d 11 be removed if prac t ica 1, or reported if
it should not be practical to remove them-.

The following comments are intended to illustrate how
user privacy will be protected from the diagnostic user.

1. A diagnostic user will not have access to routines which
. h. . ri· ... ' t ' . ,. t· F g1ve 1m 1n~.1recL access ·co res r1cLea 1nTorma 10n. or

example, he 1r1i 11 not have access to a routine 1:Jhich he
may use in order to read or write into all core locations.
He m3y, however, be able to read or write into specific
core locations which he has been allocated.

,,...
I

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BR.0.(11 PAGE 9

2. The diagnostic user will normally have access only to
the f o l l ov.,r i n g f i l es :

a. Files which are accessible to all ordinary
users

b. Files in the diagnostic user directory

c. Files in his own private directory

d. Files specified by other users as accessible
to diagnostic users

3. When a system process detects incorrect data transmissions,
the data transmitted will not normally be reported. For
example, if an unrecoverable read error occurs on a file
system device, the data read and/or the data which should
have be~n read will not be unconditionally reported to
the field engineer. However, suppose an unrecoverable
read error has occurred on an ENM and the field engineer
would like to re-read the 11 unreadable 11 record and/or
print the data read. The system may be designed such
that the field engineer always has authority to do this
on records which do not contain private date, but must
obtain approval of the system administrator to do so on
records which may contain private data.

System protection from diagnostic users

An important feature of the on-line test and diagnostic
system is protection of the operational system from blunders
made by diagnostic users. The following comments are
intended to illustrate the extent to which this protection
will be accomplished.

1 . It would be unwise to give the diagnostic user unlimited
authority to use system resources, except as required
in order to test and diagnose equipment problems.
Therefore, the diagnostic user will log in using an
account which has a moderate amount of system resources
available. This is a normal account in that it allows
access to procedures and data which are available to
other ordinary users and it m0y be adjusted so as to
cause special reports or automatic abortion from the
system when it is overdrawn. The amount of drum or disc
space may be limited and there may or may not be ability
to use additional resources via standard requests to the
transactor. When the diagnostic user starts a test or
diagnostic routine, the account number is automatically
changed to one of several diagnostic accounts. These
c.ccounts may be overdravvn to any degree vJi thout causing
the program to be aborted. ·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BR.0.01 PAGE 10

2. _Peripheral devices are allocated to the diagnostic
system by making standard requests to the transactor.
An out of service flag exists for each device which
may be allocated to the test and diagnostic system.
If the flag is set 1 the device may be allocated only
to a diagnostic account. If the flag is reset, the
device may be allocated only to a non-diagnostic account.
The field engineer will probably have authority to
execute a command which may be used to set or reset the
out of service flag.

System resource de-allocation

Many situations wilf arise at a Multics installation which
will require that a particular component be temporarily
deleted from system use.

In the context of this section, a component is defined
as any of the following.

1. Processor

2. G ICC

3. EMM

4. Memory controller plus all of its contained core.

5~ Any device connected to a GIOC.

6. Any chann.el which is connected to multiple devices.

The fol lov11ing 1 ist is intended to illustrate the variety
of situations which might require that a specific component
be temporarily deleted from the system.

1. An engineerJng change is to be installed.

2. Preventive maintenance is to be done.

3. A particular component is suspected of causing
deleterious effects on the system. Temporary
disuse of this component is required to see if
the problem stops occurring.

4. The component is t~mporarily required on another
system.

5. The compcnent malfunctions and is to be diagnosed
and/or repaired off line.

r

MULTICS SY$TEM-PROGRAMMERS' MANUAL SECTION BR.0.01 PAGE 11

6. The component malfunctions and is to be diagnosed
vJith an on-1-ine diagnostic. The diagnostic must
have complete control of the component and therefore
the Multics software must stop using it.

7. The component is to be physically moved.

There are t1:Jo basic vJays in which the system may stop
using a component. The first way is to:

1. Log each user out.

2. Force latest copies of all segments onto EMM or
disc storage.

3. Type a message indicating that the system is shut
dovm.

4. Bootload the system and initialize in a configuration
which does not include the component which is to be
deleted.

When the above method is used, a similar procedure must
be repeated when the component is added back into the
system.

The second method can be summarized as follows. Each
component has an out of service flag and an out of use
flag. The field engineer will probably have authority
to execute a commar1d to set or rest the out of service
flag.

The out of service flag getting set signals the system
to stop using that component. The system may require
several milliseconds to stop using the component (in the
case of a processor) or several minutes (in the case of
the EMM where files must be copied to other file system
devices.) When the system has stopped using the component
it sets the out of. use flag and outputs a m'=!s sage ind ic0 ting
that the component is not being used. The out of service
flag getting reset signals a system process to reset the
out of use bit and start using the component. Implementation
of this method for various components might be categorized
as f o 1 1 ovJs .

Should definitely be implemented f6rr

All peripheral devices connected to a GIOC except the
disc.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BR.0.01 PAGE 12

Should probably be implemented for:

EMM

Processor

GIOC

Disc

Any channel connected to multiple devices

Should probably not be implemented for:

System controllers

The following examples are intended to illustrate how
this mechanism might work in more detail.

Example 1 - System process or user executes a command
to stop using processor 2.

i.

2 .

3.

4.

A routine is entered which sets the processor 2
out of service flag and wakes up a routine which
initiates action to stop using processor 2.

All processor 2 actions except interrupt processing
are inhibited by placing a high priority process in
the ready list wh~ch must run on processor 2 and
vJhich executes a DIS instruct5.on .. After this
process ~s placed in the ready list, the process
currently running on processor 2 is pre-em~ted.

Interrupt orocessino by orocessor 2 is inhibited
by (a) masking off ~ll i~terrupts from all system
controllers which direct interrupts to processor 2,
(b) typing instructions to the operator to switch
the control port for each applicable system controller
and (c) restoring the applicable system memory.
controller mask registers to their original values.

The out of use flag for processor 2 5.s ncv1 set a:1d
a message is typed indicating that processor 2 is
not being used.

Example 2 - Preventive maintenance is to be scheduled
on a peripheral device.

This may be done in either of two ways: The first way
is to schedule the peripheral device using a standard

MULTICS sys TEM-PROGRM11MERS,. M.Ci.NUAL SECTION BR.0.01 PAGE 13

transactor scheduling request. The planned reservation
facility of the transactor may be used in order to schedule
preventive maintenan~e on a fixed cyclic basis. Or, the
request may be on arias needed basis. The disadvantage
of this method is that maintenance may be required on
a higher priority basis and the normal transactor requests
don"t overrid2 existing reservations previously made by
other users. Therefore, the following mechanism will
be available when it is necessary to acquire a peripheral
device for preventive maintenance on a high priority basis.

A facility to set or reset an out of service flag will
be provided for each peripheral device. This flag signals
the system to stop using that peripheral device. Normally
the user who is currently using the device will be allowed
to finish his job. However, a provision must be included
to interrupt operation to get some peripherals which are
rather permanently assigned, like card readers, or tapes
assigned to the file system. At any rate, when the process
using the peripheral releases it, the out of use flag
will be set and a message indicating this will be printed.

Implem~ntation ohases

The Multics T and D System will be implemented in two
or more phases. The first phase, hereafter called the
initial Multics T and D system, should be completely implemented
by the time Multics is available for commercial use.
The setond phase hereafter called the final T and D system,
may be implemented in several steps. The important point
is that after the _initial multics T and D system is implemented
it must be possible to implement the final T and D system
without major changes to existing Multics system modules.
This m2ans that, wherever possible, test and diagnostic
considerations must be defined and implemented in the
Multics system modules initially, not added in· later.
The initial Multics T and D system should consist of the
following on-line T and D programs plus the off-line T
and D system. (The presently existing off-line T and
D system is described in section BR.1 .)

1. A program to control user console input, compilation,
and execution of a newly developed version of TDL.
TD L is a s ymbo 1 ic .I_es t and Qiagnos t :c .Language son-:et\lha t
similar to HAD.

2. Periodic test programs ·for:

Processor
Card Punch
Card Reader
Printer
Magnetic Tape
DSU 250

"MULTIC~ SYSTEM-PROGRAMMERS- MANUAL SECTION BR.O.O1 PAGE 14

3. Diagnostics for Card Punchl Card Reader, Printer,
Magnetic Tape, and DSU25O. ·

4. A limited EMM diagnostic (generally described in BR.2.OO)
The final T and D system should consist of the initial
Multics T and D system plus diagnostics for processors,
GIOCs, memories, and EMMs where feasible and useful.
Additional periodic tests and diagnostics for peripheral
equipment should also be included in the final T and D
system.

