
MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

Quit inhibition
c. Marceau. P. Belmont

Purpose

SECTION BQ.3.06 PAGE 1

Published: 02/05/68

Certain procedures which execute in the administrative ring
of a user's working process may need to be protected from
interruption by a quit originated by the user from his
console. An example is the Reserver. which must not be
"quit out of" while it has its system-wide reservation tables
locked. Ring one modules which are sensitive to quits
may cause the process in which they execute to be unquittable
for short periods of time. Procedures executing in system
processes may also call to inhibit quits. For such processes
quit_inhibition is meaningless (since there is no console
user issuing quits) and the call to inhibit quits returns
immediately.

Discussion

Associated with each 'A'Orklng process in the Working Process
Table of its process-group ls a counter called the quit
inhibit counter. The entries described in this section
increment and decrement the counter respectively. The
counter ls observed by the stop procedure (see BQ.3.O3)
and the destroy_wp procedure. which will quit a process
only if its quit inhibit counter ls zero.

Usage

To inhibit quits for a short period of time. an administrative
ring procedure calls

call quit_inhibit$onJ

When it has ceased to be sensitive to quits. the procedure
ca 11 s

call quit_inhibit$off;

Restrictions

Quit_inhibit should be used only when it is deleterious
to the system that a process be quit. Further. it is
essential to ensure that at some later time the process
is again quittable. so that we don't end up with a runaway
process that cannot be quit.

~LTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.06 PAGE 2

The necessary safeguards take the form of several pro~ramming °'
conventions (see below) and a system-imposed restriction.
The programming conventions apply for ring one programs
which call qult_inhibit. These programs may call other
programs, which must return within a finite length of time.
Ring 1 programs are guaranteed to return within a finite
length of time (i.e., are in accord with conventions 4
and 5 - see below.). But outer ring programs are not
so guaranteed.

Hence the restriction, enforced by the ring crossing mechanism,
that .DQ fing 1 procydure .msn:, g.!J. .i!!. outer r.!!lg procedure
while guts are inh bited.

Conventions

The following conventions are hereby established for
administrative ring procedures which call quit_inhibit$on.

1) A procedure should declare itself unquittable only when not
doing so would have serious repercussions ln the system
(i.e., it ls not a sufficient reason that a programmer
thinks it would be fun to declare the procedure unquittable).

2) A procedure should declare itself unqulttable for the

3)

4)

5)

6)

smallest necessary period of time. It should probably not, .ollll\
for example, begin with a call to quit_inhibit$on and end
with a call to quit_inhibit$off.

A procedure which calls quit_inhibit$on must later call
quit_inhibit$off.

No infinite loops may lie between the two calls to
quit_inhibit.

No calls to wait for events which may never happen may
lie between the calls to quit_inhibit.

The procedure may establish a condition handler for the
condition II inhibited_rlng1 exit" prior to cal ling
qult_inhibit$on (see below!.

The "inhibited rlng1 exit" condition

Despite careful programming it may happen that one day
procedure x calls quit_inhibit$on, then calls procedure
a. A calls b calls c calls d, and d ls in an outer ring.
The gatekeeper catches the attempted ring crossing and
s lgna 1 s an "inhlb l ted_ring 1_exl t" condition.

. ,,.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.O6 PAGE 3

A procedure may be able to recover from such an event,
and has the opportunity to do so if it establishes an
appropriate handler.

The default handler first observes whether this is a system
process or not. In a system process (one whi-ch cannot
be quit anyway, and in which the call to quit_lnhibit should
not have changed the quit inhibit counter) it makes a
record of the event using-standard system trouble recording
procedures, and returns, allowlgg .:t.bg_ !.!.o.9. crossing.
In a user pr9cess, the defaultancfTer records the error
and generates a terminate-process fault. Presumably the
error is recorded in such a way as to attract the lnvnediate
attention of a systems programmer to correct the error.

Implementation

Quit_inhibit$on first increments its quit_inhlbit counter
by one. If the value of the counter ls now one, it checks
the qult_pending flag associated with its process in the
working process table (see BQ.3.O1). If the flag ls up
(the Overseer wishes to quit the process) then quit_inhibit$on
resets the counter to zero, sends an i am_quittable event
to the Overseer Process, and begins a Toop on reading
the qult_pending flag. (That is, it waits 1/2 second
and it reads the quit_pending flag. If the flag is up
quit_inhlbit loops again). At some time while it ls looping,
the process ls quit. If the process ls ever restarted,
it will read the quit_pending flag and discover that the
flag ls down (the Overseer does not want to quit the process).
Quit_inhibit then increments the quit_lnhibit counter
by one, checks the quit_pending flag again and returns
to its caller.

Quit lnhibit$off first decrements the quit inhibit counter
by one. Then, if the counter= o, it checks the quit_pending
flag associated with its process in the working process
table. If the flag ls up (the Overseer would like to
quit the process) then quit_inhlblt$off sends an i_am_quittable
event to the Overseer Process and begins to loop on reading
the quit_pendlng flag.

Meanwhile the Overseer Process wakes up because of the
l_am_quittable eve~t and the stop procedure sees that
the process ls quittable and quits it. At some later
time the Overseer may start. up the process again. When
thi$ happens the process continues what it was doing,
namely looping on the quit_pendlng flag. But now it
discovers that the flag is down and returns to its caller.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.06 PAGE 4

Should quit_inhiblt$on ever be called when the value of
the quit_inhibit counter <0 or qult_lnhlblt$off when
the value ls <1. qult_lnhlb1t notes the 11 lmposslble" occurrence
by calling a system error handling procedure. If the error
procedure returns. quit lnhlblt$on sets the qult_inhlbit
counter to 1. and quit_Tnhlblt$off sets the counter to
o. and then returns.

,, .

set
count

= 1

MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BQ.3.O6 PAGE 5
Figure 1 Flow of Quit Inhibit Procedures and Quitting Procedures

uit~inhibit$on inhibit$off

___ count= count=
count+l 1---1.-i count -1

return >08

off

reset
count to

0

send
i_am_quittable

event

ait 1/2
>-o..,n ___ ...,. second

wait 1/2
second

on

send
i_am_quittabl
event

How stop and destroy_wp quit a moving process.

set
quit_pend-t---._.....,< =O

set wakeup
inhibit, ca11

>-------11.,quit_process,
in on

-/: 0

Wait for
i_am_quittable

event

reset quit
pending -

