
MULTICS SYSTEM-PROGRAMMERS' MANUAL 

Identification 

User-process-groups, an overview 

SECTION BQ.3.00 PAGE 1 

Published: 11/03/67 

C. Marceau, J. H. Saltzer, K. J. Martin· 

Purpose 

In Multics, a single process is only capable of serial 
handling of multiple tasks. If programming of multiple 
tasks is to be organized in a parallel fashion, for either 
programming convenience, for security, or to take advantage 
of the multiple processors of the system, more than one 
process is required. A user-process-group is a collection 
of processes operating for an instance of a logged-in 
user. This section is an overview of the organization 
and operation of a user process group. 

The reader of this section should be familiar with the 
terminology presented in Section BQ.2.00. 

Process-Groups 

A user-process-group is a process-group that does work 
for a particular user. Besides user-process-groups, there 
are system process-groups, which serve the needs of the 
system as a whole, and act as support for user-process-groups. 
What, then, is a process-group? 

A process-group is a collection of one or more processes 
working together on a common Job. For example, a user­
process-group serves one particular user. A process-group 
as such has certain distinguishing features (even if only 
one process is in it): 

1) Access to segments is by process-group. Since all processes 
in the group are cooperating to accomplish a common 
Job, they all have common access to procedure and data 
segments. 

2) Resources are a 11 ocated to process-groups. If all 
processes in the group are cooperating on a common 
Job they may also cooperate in writing the results 
on magnetic tape. On the other hand, other process­
groups, since they are working on other Jobs, should 
not have access to the tape drive used by this 
process-group. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ • 3. 00 PAGE 2 

3) In general, 1/0 is per process-group, for the same reason 
as stated above. 

Now the question arises: why should there ever be more 
than one process in a process-group. That is, why can't 
one process do one Job? There are several possible reasons 
for having more than one process work on a corrmon task. 
Among these are: 

1) the desire to take advantage of the multiple processors 
of the system; 

2) the desire to break a large Job down into logical 
components which may execute concurrent_ly; 

· 3) the need to break a very large Job down into smaller 
components because of restrictions within one process 
(for example, to avoid an overflow of the descriptor 
segment); 

4) a need for concurrent processing within one Job, i.e. the 
Job itself fequires concurrency of processing. 

We therefore refrain from restricting process-groups to 
consist of a single process. It will appear in the course 
of this section that user-process-groups in particular 
must consist of at least two processes·. For the present, 
however, we define a user-process-group to be a collection 
of one or more processes dedicated to serving one logged-in 
user. We begin by exploring the path by which a process-group 
comes into existence. 

The Answering Service 

The Answering Service Process (BQ.2.01) is assigned all 
communication channels not currently in use. When a potential 
user dials up on one of these channels, the resulting 
interrupt wakes up the Answering Service Process which 
interprets the dial-up to mean that some user wishes to 
attempt to log in to the system. The Answering Service 
Process therefore creates a new process, named the User 
Control Process (described in BQ.2.03), to handle this 
task. It starts the User Control Process off in the user 
control procedure, and then returns to its vigil, waiting­
for more dial-ups. 



r 

,... 

MULTICS SYSTEM-PROGRAMMERS' MANUAL PAGE 3 

Sometime later the User Control Process may send a completion 
signal (by setting an event of the interprocess communication 
facility)o The meaning of this completion signal is that 
the User Control Process is no longer needed; perhaps 
the potential user failed to identify himself and was 
refused permission, or perhaps he logged in, worked for 
a while and has now logged out. In any case the Answering 
Service upon receipt of this completion signal reassigns 
itself the communication channel to watch for future dial-ups, 
and also destroys the no-longer-needed User Control Process. 

The User Control Process 

There is one User Control Process for each attempt to 
log in. The User Control Process has two tasks: establish 
the user's right to use system resources at this time 
and create a user-process-group for him to work with. 
The first task is accomplished by interacting with the 
user to obtain his opinion of his identification and his 
password. 

If the user satisfactorily identifies himself, the user in 
procedure then interrogates the Load Control module to -
ascertain whether or not the system can allow this particular 
user to log in now. Assuming he can log in, the User 
Control process records him as '' logged-in11 in the User 
Log, and sets him up in business with his own process-
group. This last step is accomplished by creating a process 
and starting this process off in the "overseer" procedure 
(see BQ.3.01); this process becomes the "Overseer Process11 

for the newly logged-in user. The overseer procedure 
is given as an argument the name of the console on which 
the user dialed up. 

Sometime later the Overseer may send a completion signal 
to the User Control Process. This completion signal means 
that the user is to be logged out; so the User Control 
Process destroys the Overseer, logs out the user, and 
sends a completion signal to the Answering Service. (Note 
that the work of User Control processes cannot be done 
by the Answering Service, because the Answering Service 
must listen for new dial-ups while users are being logged 
in (i.e., the job to be done demands concurrent processing.) 
Similarly, separate User Control processes ensure that 
users do not have to be logged in or logged out serially.) 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.OO 

The Absentee Monitor Process 

The Absentee Monitor Process has 2 tasks: 

, ) To monitor all requests for the running of absentee 
computations; 

2) to act as user control process for each absentee 
process-group. 

When a user types the login_absentee command, the Absentee 
Monitor assumes control of the absentee computation. 
The absentee computation begins in the shelved state; 

PAGE 4 

that is, although it has a process-group 1d reserved for 
it, no process-group is currently existing to execute 
it. After a time, when system load permits, the Absentee 
Monitor Process unshelves the computation and begins to 
assume the same role towards it as the User Control Process 
assumes toward interactive computations. The Absentee 
Monitor Process creates a Overseer Process for the absentee 
process-group. At some later time, the Absentee Monitor 
may send a suspend event to the Overseer, indicating that 
the computation should be saved in its current state before 
the Absentee Monitor destroys the Overseer Process. Later, 
when system load permits, it will again unshelve the computation. 

Finally, the Overseer Process may send a completion signal 
to the Absentee Monitor indicating that the computation 
is being logged out. The Absentee Monitor then does its 
part in the logout, destroys the Overseer Process, and 
deletes the computation from its records. 

Figure I shows the Answering Service Process, User Control 
Processes, and the Absentee Monitor Process in their relation 
to user-prpcess-groups. 

(Note that the Absentee Monitor can perform the functions of 
user control to ill absentee process-groups because it 
does not interact with the user as User Control Processes 
do. Thus it can take fts time and operate serially on 
all absentee· Jobs. User Control Processes must be more 
concerned with providing good response to users who are 
1 ogg i ng in. ) 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.00 

The User-Process-Group 

A user-process-group consists of a user's computation 
and an overseer module which is considered to be part 

PAGE 5 

of the user control package. One function of the overseer 
module is to create an environment in which the user may 
type commands as part of his computation, interact with 
the command procedures, and control his computation by 
being able to "quit" it at wi 11. After quittin~ a computation 
the user can start it again, destroy it and begin a fresh 
computation (reset), or hold the "quitted" computation 
so that it may be operated on as data. Besides its function 
of creating a friendly environment for the user's computation, 
the overseer module has responsibility to the system, 
for example to shut down the process-group in case the 
system decides to log out the user (automatic logout). 

Ideally the overseer module should execute in the same 
process(es) as the user's computation, just as the procedures 
of traffic control and the file system operate as part 
of the user's process(es). Wherever possible, this is 
indeed the case. However, one requirement on the Overseer 
is that it be able to respond quickly to signals from 
the user concerning his computation and signals from the 
system concerning the process-group. To receive such 
signals a process must be programmed to enter the wait 
coordinator (see BQ.6.00), which checks to see if any 
interprocess signals have been sent to the process. Now 
a process which is part of a user's computation is programmed 
by the user and cannot be guaranteed to enter the wait 
coordinator often enough to give "immediate" response 
to signals from the user or the system. Hence one process 
in each user-process-group, called the Overseer Process, 
contains those modules necessary to respond to user and 
system signals. The Overseer Process spends most of its 
life in the wait coordinator, waiting for signals. When, 
for example, a quit signal arrives, the Overseer immediately 
executes the quit procedure (see BQ.3.03) and then reenters 
the wait coordinator. After a user has quit, he may by 
typewriter request start, reset, or hold. These requests 
are processed, as far as its possible, in processes which 
execute the user's computation. 



MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BQ.3.03 

Further, the save and resume procedures (also part of 
the overseer module) execute for the most part in user 
processes. (In the initial version of Multics all of 

PAGE 6 

the procedures mentioned above will execute in the Overseer 
Process, for ease of implementation. Later only quits 
and system-initiated events will be handled in the Overseer 
Process.) 

A user-s computation typically consists of the execution 
of a series of commands, perhaps including parallel execution 
of some procedures. In the Multics Command System, the 
order of execution is as follows: 

The Listener procedure (see BX.2.02) "listens" at the typewriter 
for the user to type a command sequence. When he does 
so the Listener calls the Shell (see BX.2.00) to interpret 
the command sequence. The Shell calls a conmand, which 
calls several procedures, and then eventually returns. 
If there are more commands in the sequence, the Shell 
calls the next command. If this ls the last command in 
the sequence, the Shell returns to the Listener, which 

11 11 stens11 for the user to type another command sequence. 

A process in which the user-s computation executes is called 
a working process. A working process has certain peculiar 
features: for example, its options (see BX.12.00) and 
working directory table (see BX.8. 12) are set up to correspond 
to the user-s options and working directory. (In system 
processes these user-oriented features may be mere appendices. 
That is, their option-stacks and working directory tables 
may not exist, and default values for the options and 
working directory may be assumed.) 

The user may, in the course of a command, create other 
working processes to execute in parallel with his command. 
These working processes do not have the format of Listener 
calls Shell, etc., as above, but are programmed entirely 
by the user (see BY.5.01 on creating a working process). 



,.. MULTICS SYSTEM- PROGRAMMERS' MANUAL SECTION BQ.3.OO PAGE 7 

The Overseer Process and Working Processes 

The Overseer Process, created by the User Control Process, 
is the first process of a user-process-group to come into 
existence. After initializing certain process-group-wide 
data bases, it creates a working process, and causes the 
working process to execute the login responder of the 
user. The login responder is usually a program which 
listens for user commands: the usual login responder 
is the Listener procedure described above. 

After some time the working process may signal an event 
to the Overseer Process to indicate that the login responder 
is returning to its caller. When that happens the Overseer 
creates a new working process and causes it to execute 
the login responder again. The Listener procedure (the 
Multics Command System login responder) returns in order 
to housekeep, that is to start a fresh computation without 
old commands and procedures clogging up the address space 
of its process(es)o 

It may also happen that the user from his console sends 
a ''quit" signal to the Overseero Then the Overseer halts 
the current computation and begins a fresh one. It does 
this by creating a new working process and causing it 
to execute the quit responder of the user. The Multics 
Command System quit responder (that of most users) is 
a special entry to the Listener. When called at this 
entry, the Listener watches out for the commands II start", 
"hold" or "reset", and for commands which imply these 
commands. This is because start, hold, and reset are 
actually requests concerning the user's computation, and 
not "commands" in the usual sense (thus they are usually 
meaningless in the middle of a command sequence)o 

Finally, at some time some working process may signal 
a logout event to the Overseer Process. When this happens, 
the Overseer destroys the current computation and any 
quit computation which is still around, deallocates resources 
allocated to the process-group, and sends a completion 
event to its creator. 

Figure II shows the processes of a typical user-process­
group, arranged in computationso 



MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BO • 3. 00 PAGE 8 

Asynchronous Input/Output (1/0) 

In general it is desirable to allow a working process 
to proceed with its work as quickly as possible, for example 
to solve one equation while the user is inputting the 
next equation. Thus the next equation is ready for the 
working process as soon as the working process is ready 
for it. Similarly, it is desirable that the working process 
not be required to output the results of the first equation 
at the slow speed of the typewriter, but that it can proceed 
to the next computation while the results of the first 
are being outputted. 

Such read-ahead and write-behind imply concurrent processing: 
that is, the working process computes and the device is 
monitored concurrently. The process which does the latter 
Job is called (surpriseJ) a device manager process. 

The device manager process which monitors a device used 
by a user-process-group could reside in the user"s process­
group, and this may occasionally be the case, as when 
a system programmer is checking a new device control module 
(see BF. □). Normally, however, device manager processes 
for each type of device (e.g., typewriter, or tape) are 
pooled in a separate process-group. This arrangement 
has two advantages: 

1 ) 

2) 

it allows for easier protection of device assignments; 

it permits one device manager to monitor devices 
for more than one user process group, if this can. be 
done without degrading response time. 

Concurrent processing of I/0 is handled automatically 
by the 1/0 system. Thus a user procedure can simply call 
the 1/0 system read procedure, without having to be aware 
of the fact that a device manager process may already 
have read in characters from a physical device and stored 
them in a buffer where the read procedure can find them. 



,. 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.OO PAGE 9 

Answering 

Service 

I ~ 
Absentee 

User User User Monitor Control Control Control Process Process Process Process 
I II III 

Overseer Overseer Overseer Overseer Overseer verseer· 
of of of of of f 
Process- Process- Process- Process- Process- rocess-
Group I Group II Group II~ Group IV Group V roup VI 

Figure I Overview of User Control 

The Answering Service Process, creates one User Control 
Process for each dial-up. The User Control Process creates 
an Overseer Process if the user who dialed up logs in 
successfu 1 ly. 

The Absentee Monitor Process acts as "Answering Service" 
and "User Control'' for all absentee logins. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.00 

Figure II - A typical user-process-group 

Overseer 

Process 

1- - - - - - - -

Working 
Process 

I 

Working 
Process 

II 

L-
computation just quit 

Working 
Process 

III 

nascent 
computation 

In this example 1 a user was executing a command which 
created another process for concurrent processin9. Then 
he pressed the quit button at his console. Now 1f he 
types the start command the two processes executing his 
former computation will be restarted and Working Process 
III destroyed. Otherwise, Working Processes I and II 
wi 11 be destroyed and he will continue with the fresh 
computation in Working Process III. 

PAGE 10 

I 

- I 

I 

--1 
-, 

I 

_:_ -1 


