TO: MSPM Distribution

FROM;: H. J. Hebert
SUBJECT: BQ,.1.01
DATE ; 05/10/68

This reissue of BP.1.01 represents a minor revision of
the System Control Process. Some of the changes are as
follows:

(1) The overseer and user control processes are now created
only once and by system control.

(2) The communication mechanisms between the system
operator and system control are more explicitly stated.

(3) The function of sys_control{response is now handled by
sys_control2yreflector, .

(4) New items have been added to some of the data
structures.

(5) New data segments have appeared.

(6) System Control is now in three segments because of
its size.

(7) New directories are used by System control,

MULTICS SYSTEM-PROGRAMMERS © MANU SECTION BQO.1.01 PAGE 1

Published: 05/10/68
(Supersedes: BQ.1.01, 10/27/67)

Identification

System Control Procedure
C. Marceau and H. Hebert

Purpose

The system control procedure has 3 functions:

1) after initialization of Multics is complete the
Initializer Control Program calls the system
control procedure to make the system available
to users; .

2) the system control procedure responds to operator
requests concerning the system, e.g. the request
to configure the communications lines;

3) at system shutdown time the system control procedure
takes appropriate action to shut down all system
processes and put the system in a stable state in
which it can remain until brought up again., It
then returns to the initializer control program
which shuts down the hardcore supervisor and
hardware control procedures.

Discussion

Multics initialization begins when an operator presses

the bootload button on a GIOC in order to '"bring up the
system', During initialization a Multics environment

is created so that the last phase of the Initializer Control
Program is executin? in a bona fide Multics process which

is capable of creating other processes. The Initializer
control program then executes the call

call Multics;

The procedure thus invoked first makes sure that the file
system hierarchy is reloaded if necessary, and then creates
a new process in a new process-group.

The new process is called the system control process,

and its process-group is the system control process-group.
The first procedure executed by the new process after
initialization is the system control procedure. Now the
system control procedure goes on to establish communication
with the operator, |

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BQ.1,01 PAGE 2

First system control creates some input/output machinery

to enable the operator to input a login line. To do this
system control creates a process in another process-group.
This process acts as a universal device manager, doing
typewriter 1/0 for all users. (There may be some exceptions
to the "all" as when a systems programmers is testing

out a new Device Interface Module within his own process~-group.
Normally, however, a part of the Device Interface Module
serving a user on the system executes outside of the user
or system process-group, in a device manager process-group).
Later, at the operator®s behest, system control may create
such universal device managers for each type of device,

such as printers or tape drives, -

(Eventually the operator should be able to communicate

with initialization. The means for doing so without preexistenee t
I/0 machinery is not yet available. When it is available,

system control will have to disable the operator”s console

after initialization so that he can log in later using

standard 1/0).

Now system control creates the other system processes
necessary to lo? in the operator. First it creates a
process within 1ts own process-group and causes it to
execute the load_control procedure, The Load Control
process will be responsible for measuring load on the
system and maintaining a ranking of user process-groups.

Load Control is created at this time because it is consulted
whenever any user, including the operator, logs in. (The
system operator’s process-group is always the highest
priority group in the ranking, hence is never "bumped"
should system load get too heavy).

System control, next, creates another process in its own
process-group. This new process is the overseer of all
user process=-groups and handles all the quits from these
process-groups.

Next system control creates a user control process within
its own process-group. This process is created now because
it handles the logins and logouts of all user process-groups.

Then system control creates another process within its

own process-group and causes it to start executing the
answering service procedure., The Answering Service Process
answers dialups from users and controls all devices over
which users may dial up.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BQ.1.01 PAGE 3

The answering service now attaches all the communication
lines to itself in an offhook state except the operator”’s
console which is placed onhook. Then the answering service
sends an interprocess signal to system control and waits

for a shutdown signal (see B).2.01). Meanwhile the operator
dials up, logs in and types a command.

At this point there are three process-groups: the system
control process-group, the universal device manager
process-group, and the operator ‘s user-process-group.

The system control process=-group contains five processes:
system control, load control, the answering service, user
control and the overseer, The operator”®s process-group
contains one working process to execute the operator’s
commands .

N.B.: The operator we are discussing is the System Opzrator,
meaning that he controls the operation of the system by

his commands. Other operators may be around to handle
requests for tapes, to run the printer and card reader,

etc. But the term "The operator" in this section refors

to the System Operator.

Note that the operator has logged in as a garden-variety
user and is not ipso facto known to system control. He

must inform system control that he has logged in and be
identified as a system operator so that communication

can be established between his process-group and system
control. This he does as follows: after logging in the
operator types an "op_here" command. The command procedure
must find the process-id of the system control process

and the name of an event channel over which to signal

the operator’s presence to system control. This information
has been placed by system control in the segment "operator_comm"
in the system control process-group directory. The command
next places the name of the operator and the instance

tag of his process-group in the segment "operator_rep",

also in the system control process=-group directory, and
signals the event.

Protection of system control is provided as follows.

The system operator logs in as a user, i.e, as a person
working on a project. The project under which he logs

in is "sys_operator". Only certified system operators

may work on this project and system operator commands

are available only to users on this project. The segments
"operator_rep" and "operator_comm' and the op_here event
channel are accessible to any user on this project. After

P

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BQ.1.01 PAGE 4

the operator has placed his personal name and instance

tag in the segment "operator_rep", system control changes
the access to all operator-accessed segments, except
"operator_comm'' and "operator_rep", and to the request
event channel, so that only this particular operator can
access them, 1t then makes an entry in the system operation
log giving the data and time the system came up ard ti :
name of the operator, It is thus ensured that there is
only one system operator at a time and that he is knocwn

to system control, (See below for actions taken t~ change
operators). ,

The operator may now commence to type commands controliing
the operation of the system., The general form of these
commands is as follows: the command, executing in the
operator®s working process, writes the name of the request
in the segment "request_name', sends to system control

a signal over the request event channel, perhaps after
putting more specific information in some segment in the
request directory (pathname: > system_process_reserved_
storage > request_dir) dedicated to the use of this comand.
Such segments vary in format according to the command.

Meanwhile, back at the ranch, the signal sent by the operator”’s
process is received by sys_control2yreflector, which wakes

up and looks in the segment '"request_name" for the name

of the request. Sys_control2yreflector determines which
process should respond to the request, sends an appropriate
event to that process and waits for a request-serviced

signal from the process.

The appropriate process wakes up, handles the request,
and sends an event signal back to system control, which
reflects the signal to the operator”®s proc=zss, (For a
description of how these commands appear to the operatcr’s
process, see BX.15.00). System control, after signalling
the operator, waits for another command,

System operator commands issued soon after system initialization
include commands to create and start up other processes

in the system control process group, and other system
process-groups (see B).1,02 for a list of system processes

and system process-groups.).

The System Operator may also issue commands to split off
operator responsibility to other operators. 1In particular
he can allow a logged-in operator to become media operator
or answerin? service operator, Each such delegation of
responsibility is noted in the system log. Such delegation -
of responsibility has two benefits:

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BQ.1,01 PAGE 5

1) the operation of a large system may be divided
among several operators;

2) event channel communication may be made more direct
between the operator‘s process -group and the
process or process-group to which he coimuricates
his requests. (Changes of operator are still
managed by system control),

At a later time the system operator may wish to gu home
(assuming the system stays up so long) and allow another
operator to take his place, First the replacem2nt operator
logs in, as a normal user. Then the System Operator types
a command indicating that the new operator is to take

his place, System control verifies the identity of the
replacement, and that he is logged in, then changes the
access to its segment and event channels so that only

the new operator can access them, It then notes the change
of operators in the system log and prints appropriate
comments to the former system operator and the new system
operator.,

System control also provides a channel over which the

Load Control process will signal it should the operator

log out for any reason (by mistake, or because the connection
to his console is broken), Should such a thing happen

the operator is guaranteed (by Load Control) to be able

to log in again and reestablish his connection with system
control, Meanwhile no other operator may log in and assume
control of the system, In the unlikely occurence that

an operator drops dead, and in the course of doing so

logs out (e.g., by falling on the "power off'" button of

his console) then only the system locksmith can save the
situation,

As the sun sinks slowly into the west, the system operator
types the shut-down command. 1In response to this command,
system control has the load control process log out all

users (last of all the operator), send windup signals

to all other system process groups and to the system processes
in its process-group, then destroys all other processes

except itself, cleans up its own data bases, notes the

system shutdown in the system log, and returns to its

caller, Multics, which returns to the Initializer control
program, Initializer control shuts down the hardware.

Implementation

The above discussion outlines the basic strategy of system
control. The remainder of this section is included to
clarify some details of implementation.

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BQ.1.01 PAGE 6

Calling Sequence

The system control procedure is called by process initialization
when initialization of the process is complete, It has
no arguments:

call sys_control;

Iables

System control has the primary duties of creating system
processes and reflecting operator requests to these processes.
For the first job it uses the system process table.

The table is a PL/1 structure into which system contiol

writes pertinent information concerning the processes.

When it creates a system process, system control fills

in for later use the items iIn the system process table:
dcl 1 system_process_table external static,

2 n_processes fixed bin (17), /¥* number of processes

in table*/
2 process (100),
3 name char (32), /* symbolic name¥*/
3 id bit (36),
3 begin_service bit (70), | /* event channels¥/

3 halt_service bit (70),
3 shut_down bit (70);

To create a system process or process-group, system control
calls the create_proc procedure (see BJ.2.01). Among

the arguments it passes to create_proc is the process

i¥1t1a ization table (PIT) for the process-to-be. A1l

PIT“s used by system control are copied from templates

found in the PIT directory, (pathname: > system_process_reserved_
storage > pit_dir)., Each PIT in the directory has as

its name the 32-character name of the system process.

This table contains the name of the first procedure to

be executed after initialization (e.g., ans_initdinit)

and also contains a free data area., The procedure named

in the PIT receives a pointer to this data area as its

sole argument, For all processes created by system control,
this PIT contains a standard "argument 1ist"., By standardizing
the argument 1ist for all processes which it creates,

system control

MULTICS SYSTEM-PROGRAMMERS © MANUAL

SECTION BO.1.,01

PAGE 7

can have the advantage of being table driven, and does
not need to be rewritten each time someone dreams up a

new system process,

The "argument 1ist" for all processes

created by system control contains the following items
("S" indicates argument supplied by system, "R" indicates
return argument).

decl 1
2
2
2

arglist based (argp),
p_g_name char (50),
sys_control_id bit (70),
init_done bit (70),

begin_service bit (70),

halt_service bit (70),

shut_down bit (70),

shut_down_complete bit (70),

request_serviced bit (70),

/%
/*
/*

/%

/*

/*

/%

/*

N,

process_group id */
id of system control %/

event channel over
which the process

can signal that it
has finished
initialization (S) ¥%/

event channel over
which system control
can signal the process
to begin service (R) */

event channel over
which system control
can signal the
process to halt
service (R) ¥*/

event channel over
which system control
can signal the process
to shut itself (or

its process-group)
down so that it can be
destroyed (R) */

event channel over
which the process can
signal that its shut
down is completed

(S) */

event channel over

~ which the process

should signal when
it has serviced a
request (S) */

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BQ.1.01 PAGE 8

2 n_requests fixed bin (17), /¥ number of operator
requests which are to
be reflected to the
process (S) */

2 operator_request (argp—arglist.n_requests),

3 request_name char (32), /* name of operator
request (S) */

3 request_chn bit (70); /* chann=1 over which
system control can
signal the request (R) */

2 data char (K);

The event channel information in the above 1ist is also
recorded in the system process table described above.

In fact, system processes could exchange event channel
information with system control through that table, but

the exchange is done in this way so that all system processes
- will not have to be revised if there is a change in the

.+ format of the system process table.

System control uses the system process table and the PIT’s

‘- to fulfill its first function, that of creating system

processes, To fulfill its second function, acting as
mediator for the operator, system control uses the o$ergtoc
request table, This table is input at system initialization
time, Together, they inform system control of the limits

-of its responsibility; that is, they define respectively
: ‘all the possible system processes and all the possible
. .operator requests, (There may later be some provision
-made for adding to these tables while the system is running.)
The -operator request table allows the reflection of operator
. requests to be table driven.

The operator request table is in two parts., The first part
of the table consists of a segment named " request_text",

... of ascii text,'definin? possible operator requests. This
part. is the part that is input at system initialization
time and goes into the system control directory (pathname;
> system _process_reserved_storage > sys_control)., The
ascii text is a sequence of lines, one line per request.

.On-each line appear 3 items, separated by semicolons:

15f -the name of»the request (g 32 chars);‘

2)'(the name of the process or process_group to which the :
request should be reflected, e.g., ans_service (<32 chars);

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION Bp.1.01 PAGE 9

3) the name of a segment associated with the request, to
be created in the request directory (<32 chars)

An extra semicolon at the end of the last 1line signals
end of table.

The second part of the table is a PL/I structure into
which system control writes pertinent information during
initialization concerning the requests. '

The structure is as follows
dcl 1 request_table external static,

2 n_requests fixed bin (17), /*number of requests
in tablex/

2 requests (100),
3 name char (32), /*name of request¥*/

3 segment_name char (32), /*name of segment
associated with
request*/

3 process_name char (32), /*name of process
request is to be
reflected to¥/

3 process_id bit (36), /*id of process and
event channel to
which event should
be reflected*/

L4

3 ev_chn bit (70);

System control fills in the last 2 items as they become
available,

System control also keeps a table of possible operator
functions. ' This table is used to fill in the system operator’s
function table when he reports in., When other operators
report in they get a function table with no entries.

When a function is delegated to an operator then it is
taken out of the system operator“s function table and
placed in the other operator”s table. This table of
possible operator functions is in two parts: an ascii
segment which comes in at system initialization time and
a PL/1 structure kept in external static. The ascii text,
"op_functions_text" in the system control directory

MULTICS

SYSTEM-PROGRAMMERS © MANUAL SECTION BO.1.01 PAGE 10

(pathname: > system_process_reserved_storage> sys_control),
is a sequence of lines, one line per function. On each
line appear 4 items separated by semicolons.

1)
2)

3)

k)

function name;

yes or no, depending on whether the function is an
unsolicited request or not. An example of an
unsolicited request is a request from a user asking
the operator to mount a certain tape reel;

name of a function_here procedure, This is a procedure
which established interprocess communication between
the operator’s process and the system process which

is associated with the function. This entry may be
null;

name of an attach_here procedure, This is a procedure
which attaches to the operator®s process any non-console
1/0 device which the operator will use in his work, for
example a cathode ray tube, This item may be null,

An extra semicolon at the end of the last line signals end of

table,

The PL/I structure is as follows:

deciére

1 op_functions external static, /* table giving all
possible opera=-
tor functions */

2 n_fcns fixed bin (17), /* number of func-

' tions in table¥/
2 fcns (100),

3 name char (32), /* name of
: function */

3 op_name char (2.4), /* name of opera=
tor having this
function */

3 unsol_req bit (1), /%* 1 if an unsoli-
cited request,.
0 if not */

3 n_hpc fixed bin (17), /*ﬁno. of charach
‘ ters in attach_:
proc */

ﬂ

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BQ.1.01 PAGE 11

3 attach_proc char (32); /* name of attach_
‘ here procedure %/

Another segment which system control creates and keeps

in its process-group directory is "ucp_comm'., This is

a segment which provides communication between the answering
service and user control and user control and the overseer
during login and logout of users. (See BQ.2.01 for details
about the segment).

Entries to system control

System control has one entry for initialization, sys_control
sys_control, and one entry for reflecting operator requests,
as mentioned above, sys_control2yreflector. The second

entry is called as follows. System control creates an

event call channel over which it receives all operator
requests, as described above, 1t associates with this
channel the procedure sys_control29reflector. After
initializing the system and entering the operator ‘s name

on the system log, system control calls the wait entry

in the wait coordinator, Thereafter the wait coordinator
acts as a dispatcher for system control, returning only

when the shutdown event is signalled. Sys_control2yreflector
signals shutdown to the system control process when it
recognizes a shutdown request,

In addition to the entries sys_control and reflector system
control has one entry for each command which is directed
particularly to system control (except shutdown, which

is signalled over an event wait channel and hence causes

a return to sys_controlysys_control.)

Examples of such requests are the request to change system
operators or the request to split off control of some

part of operations (prime example: media management) to

an auxiliary operator., Also, the request to create a
system_process is directed to sys_control2ystartup.

Another entry is sys_control33dnotify. This entry notifies
the system process or module associated with a function
that it must initialize itself and that it also is getting
a new operator as handler of its function,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BQ.1.01 PAGE 12

Directories

In addition to the process and process-group directories,
system control uses three other directories, all found
in the system_process_reserved_stora?e directory. They
are the pit directory, the request directory and the
sys_control directory.

The pit directory (pathname: > system_process_reserved_storage
>pit_dir) contains template pits of all the systzm processes
which system control can be called upon to create. The
system control process group has read access to all segments
in this directory, This directory has all its entries

when system control begins executing.

The request directory (pathname: >system_process_reserved_storage
>request_dir) does not exist when system control begins
executing. This directory comes into being when system
control creates the segment needed by the Answering Service
commands. In this directory go all the segments needed

by the different operator requests and the segment called
"request_name'" . When the operator wishes to signal a
request, first he places the request name and a return
channel in the segment, "request_name", then signals the
request to system control, Only the system operator and
system process-groups have read and write access to every
segment in this directory. However, all operators have
access to the segments "operator_comm' and "operator_rep".

The system control directory (pathname:>system_process_reserved_
storage>sys_control) exists and has two ascii segments

in it when system control begins execution. These are

the segments 'request_text" and "op_functions_text",

These give a list of all the possible operator requests

and functions respectively, Access to this directory

is limited to the system control process-group.

System Control In Initial Multics

Initial Multics will include all of system control as

described in this section. The difference between the
initial version and later versions is that in Initial

Multics system control will accept only the following

operator requests to itself:

1) startup of system processes,
2) shutdown of the system.

Later versions will include commands to change system
operators, delegate functions to other operators, etc.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BQ.1.01 PAGE 13

Initial Multics also includes the simplification that
load control will not require a separate process but only
a system-wide table. Hence instead of creating the load
control process, system control creates the system-wide
load control table,

