
•

TO:
FROM:
SUBJECT:
DATE:

MSPM Distribution
H. J. Hebert
BQ.1.01
05/10/68

This reissue of BQ.1.01 represents a minor revision of
the System Control Process. Some of the changes are as
fol lows:

(1) The overseer and user control processes are now created
only once and by system control.

(2) The comnunication mechanisms between the system
operator and system control are more explicitly stated.

(3) The function of sys_controlgresponse is now handled by
sys_contro12greflector. .

(4) New items have been added to some of the data
s true tu res.

(5) New data segments have appeared.

(6) System Control is now in three segments because of
its size.

(7) New directories are used by system control.

MULTICS SYSTEM-PROGRAMMERS' MANU SECTION BQ.1 .01 PAGE 1

ldenti fication

System Control Procedure
C. Marceau and H. Hebert

Purpose

Published: 05/10/68
(Supersedes: BO .1.01 1 10/27 /67)

The system control procedure has 3 functions:

1) after initialization of Multics is complete the
Initializer Control Program calls the system
control procedure to make the system available
to users;

2) the system control procedure responds to operator
requests concerning the system, e.g. the request
to configure the communications lines;

3) at system shutdown time the system control procedure
takes appropriate action to shut down all system
processes and put the system in a stable state in
which it can remain until brought up again. It
then returns to the initializer control program
which shuts down the hardcore supervisor and
hardware control procedures.

Discussion

Multics initialization begins when an operator presses
the boatload button on a GIOC in order to "bring up the
system". During initialization a Multics environment
is created so that the last phase of the Initializer Control
Program is executing in a bona fide Multics process which
is capable of creating other processes. The Initializer
control program then executes the call

call Multics;

The procedure thus invoked first makes sure that the file
system hierarchy is reloaded if necessary, and then creates
a new process in a new process-group.

The new process is called the system control process,
and its process-group is the system control process-group.
The first procedure executed by the new process after
initialization is the system control procedure. Now the
system control procedure goes on to establish communication
with the operator.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT! ON BO. 1 .01 PAGE 2

First system control creates some input/output machinery
to enable the operator to input a login line. To do this
system control creates a process in another process-group.
This process acts as a universal device manager, doing
typewriter 1/0 for all users. (There may be some exceptions
to the "all" as when a systems programmers is testing
out a new Device Inter.face Module within his own process-group.
Normally, however, a part of the Device Interface Module
serving a user on the system executes outside of the user
or system process-group, in a device manager process-group).
Later, at the operator's behest, system control may create
such universal device managers for each type of device,
such as printers or tape drives.

(Eventually the operator should be able to communicate
with initialization. The means for doing so without preexisten~t-
1/0 machinery is not yet available. When it is available,
system control will have to disable the operator's console
after initialization so that he can log in later using
standard 1/0).

Now system control creates the other system processes
necessary to log in ·the operator. First it creates a
process within its own process-group and causes it to
execute the load_control procedure. The Load Control
process will be responsible for measuring load on the
system and maintaining a ranking of user process-groups.

Load Control is created at this time because it is consulted
whenever any user, including the operator, logs in. (The
system operator's process-~roup is always the highest
priority group in the r~nk1ng, hence is never II bumped"
should system load get too heavy).

System control, next, creates another process in its own
process-group. This new process is the overseer of all
user process-groups and handles all the quits from these
process-groups.

Next system control creates a user control process within
its own process-group. This process is created now because
it handles the logins and logouts of all user process-groups.

Then system control creates another process within its
own process-group and causes it to start executing the
answering service procedure. The Ans,r,,ering Service Process
answers dialups from users and controls all devices over
which users may dial up.

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.1.01 PAGE 3

The answering service now attaches all the co1T111unication
lines to itself in an offhook state except the operator's
console which is placed onhook. Then the answering service
sends an interprocess signal to system control and waits
for a shutdown signal (see BQ.2.01). Meanwhile the operator
dials up# logs in and types a command.

At this point there are three process-groups: the system
control process-group# the universal device manager
process-group# and the operator's user-process-group.
The system control process-group contains five pr1cesses:
system control# load control# the answering service, user
control and the overseer. The operator's process-group
contains one working process to execute the operator's
commands.

N.B.: The operator we are discussing is the System Op·;rator#
meaning that he controls the operation of the system by
his commands. Other operators may be around to handle
requests for tapes# to run the printer and card reader,
etc. But the term "The operator" in this section ref,2rs
to the System Operator.

Note that the operator has logged in as a garden-variety
user and is not ipso facto known to system control. He
must inform system control that he has logged in and be
identified as a system operator so that communication
can be est9blished between his process-group and system
control. This he does as fol lows: after logging in the
operator types an "op_here" command. The command procedure
must find the process-id of the system control process
and the name of an event channel over which to si$nal
the operator's presence to system control. This information
has been placed by system control in the segment II opP-rator _comm"
in the system control process-group directory. The command
next places the name of the operator and the instance
tag of his process-group in the segment II operator _rep"#
also in the system control process-group directory, and
signals the event.

Protection of system control is provided as follows.
The system operator logs in as a user# i.e. as a person
workin~ on a project. The project under which he logs
in is I sys_operator". Only certified system operators
may work on this project and system operator commands
are available only to users on this project. The segments
11 operator _rep" and 11 operator _comm'' and the op_here event
channel are accessible to any user on this project. After

,.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.1 .01 PAGE 4

the operator has placed his personal name and instance
tag in the segment II operator _rep", system control changes
the access to all operator-accessed segments, except

11 operator _conrd' and "operator _rep", ana to the request
event channel, so that only this particular operator can
access them. It then makes an entry in the system opP-ration
log giving the data and time the system came up ~rid t, 0~

name of the operator. It is thus ensured that there is
only one system operator at a time and that he is, kn01.~n
to system control. (See below for actions taken t" ch~mge
operators). _

The operator may now corrmence to type commands cont,rollinq
the operation of the system. The general form of these
convnands is as fo 11 ows , the co111nand, execut 1 ng in the
operator's working process, writes the name of the request
in the segment II request_name11 , sends to system control
a signal over the request event channel, perhaps after
putting more specific information in some segment in the
request directory (pathnames > system process reservc·d_
storage > request_dir) dedicated to the use of this con1nand.
Such segments vary in format according to the conmand.

Meanwhile, back at the ranch, the signal sent by the operator's
process is received by sys_contro12~reflector, ..,,,hich wakes
up and looks in the segment II request_name" for the name
of the request. Sys_contro12~reflector determines which
process should respond to the request, sends an ~ppropriate
event to that process and waits for a request-ser·viced
signal from the process.

The appropriate process wakes up, handles the request,
and sends an event signal back to system control, which
ref lee ts the s igna 1 to the operator's proc~ss. {For a
description of hO\.~ these commands appear to the operatc.,r's
process, see BX.15.00). System control, after signalling
the operator, waits for another command.

System operator comnands issued soon after system initialization
include conmands to create and start up other processes
in the system control process group, and other system
process-groups (see BQ.1.02 for a list of system processes
and system process-groups.).

The System Operator may also issue commands to split off
operator responsibility to other operators. In particular
he can allow a logged-in operator to become media operator
or answering service operator. Each such delegation of
responsibility ls noted in the system log. Such delegation -
of responsibility has two benefitss

,... MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BQ.1.01 PAGE 5

1) the operation of a large system may be divided
among several operators;

2) event channel conrnunication may be made more direct
between the operator's process-group and the
process or process-group to which he corm1urdcates
his requests. (Changes of operator are sti 11
managed by system control).

At a later time the system operator may wish to 9(• home
(assuming the system stays up so long) and allow another
operator to take his place. First the replacerri-~nt operator
logs in, as a normal user. Then the System Operator types
a conmand indicating that the new operator is to take
his place. System control verifies the identity of the
replacement, and that he is logged in, then changes the
access to its segment and event channels so that only
the new operator can access them. It then notes the change
of operators in the system log and prints appropriate
conments to the former system operator and the new system
operator.

System control also provides a channel over which the
Load Control process will signal it should the operator
log out for any reason (by mistake, or because the connection
to his console is broken). Should such a thing happen
the operator is guaranteed (by Load Control) to be able
to log in again and reestablish his connection with system
control. Meanwhile no other operator may log in and assume
control of the system. In the unlikely occurence that
an operator drops dead, and in the course of doing so
logs out (e.g., by falling on the "power off11 button of
his console) then only the system locksmith can 5ave the
situation.

As the sun sinks slowly into the west, the system operator
types the shut-down command. In response to this command,
system control has the load contr-ol process log out all
users (last of all the operator), send windup signals
to all other system process groups and to the system processes
in its process-group, then destroys all other processes
except itself, cleans up its own data bases, notes the
system shutdown in the system log, and returns to its
caller, Multics. which returns to the Initializer control
program. Initializer control shuts down the hardware.

I mp lementat ion

The above discussion outlines the basic strategy of system
control. The remainder of this section is included to
clarify some details of implementation.

MULTICS SYSTEM-PROGRAMMERS- ~NUAL SECTION 8;).1.01 PAGE 6

Ca 1] ing Sequence

The system control procedure is called by process initialization
when initialization of the process is complete. It has
no arguments:

call sys_controlJ

Tables

System control has the primary .duties of creating system
proc~sses and reflecting operator requests to these processes.
For the first Job it uses the system erocess table.

The table is a PL/I structure into which system control
writes pertinent information concerning the processes.
When it creates a system process, system control fills
in for later use the items in the system process table:

dcl 1 system_process_table external static,

2 n_processes fixed bin (17),

2 process (100),

3 name char (32),

3 id bit (•36),

3 begin_service bit (70),

3 halt_service bit (70),

3 shut_down bit (70)J

I* number of processes
in table*/

/* symbolic name*/

I* event channels*/

To cr~_ate a system process or process-group, system control
cal ls,'the create_proc procedure (see BJ.2.01). Among
the arguments it passes to create_proc is the process
ifitialization table (PIT) for the process-to-be. All
P T$s used by system control are copied from templates
found in the PIT directory, (pathname:> system_process_reserved_
storage> pit dir). Each PIT in the directory has as
its name the !2-character name of the system process.
This table contains the name of the first procedure to
be executed after initialization (e.g., ans_init~init)
and also contains a free data area. The procedure named
in the PIT receives a pointer to this data area as its
sole argument. For all processes created by system control,
this ·PIT contains a standard "argument 1ist11 • By standardizing
the argument list for all processes which it creates,
system control

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.1.01 PAGE 7

can have the advantage of being table driven, and does
not need to be rewritten each time someone dreams up a
new system process. The ''argument list" for all processes
created by system control contains the following items
(" S11 indicates argument supp 1 ied by sys tern, "R" indicates
return argument).

dcl 1 arglist based (argp),

2 p_g_name char (50),

2 sys_control_id bit (70),

2 init_done bit (70),

2 begin_service bit (70),

2 halt_service bit (70),

2 shut_down bit (70),

2 shut_down_complete bit (70),

2 request_serviced bit (70),

I* process_group id*/

/* id of system control *I

/* event channel over
which the process
can signal that it
has finished
ini t ia lizat ion (S) */

/* event channel over
which system control
can si~nal the process
to begin service (R) */

/* event channel over
which system control
can signal the
process to halt
service (R) */

/* event channel over
which system control
can signal the process
to shut itself (or
its process-group)
d01111n so that it can be
destroyed (R) */

/* event channel over
which the process can
si~nal that its shut
d01111n is completed
(S) */

/* event channel over
which the process
should signal when
it has serviced a
request (S) */

MULTICS SYSTEM-PROGRAMMERS., MANUAL SECTION BO. 1. 01 PAGE 8

2 n_requests fixed bin (17), /* number of operator
requests which are to
be reflected to the
process (S) */

2 operator_request (argp-.arglist.n_requests),

3 request_name char (32),

3 request_chn bit (70);

2 data char (K)J

/* name of operator
request (S) */

/* channel over which
system control can
signal the request (R) */

The event channel information in the above list is also
~ recorded in the system process table described above.

In fact, system processes could exchange event channel
information with system control through that table, but
the exchange is done in this way so tflat all system processes

·wi.11 not have to be revised if there is a change in the
, ,format of the system process table.

System control uses the system process table and the PIT""s
· to fulfi 11 its first function, that of creating system
processes. To fulfill its second function, acting as
mediator for the operator, system control uses the o~erator
request table. This table is input at system initia ization
time. Together, they inform system control of the limits

·:of its responsibi 1 ity; that is, they define respectively
all the possible system processes and all the possible

., .,operator requests. (There may later be some provision
··made for adding to these tables while the system is running.)
The,:operator request table a 110\/lls the reflection of operator

.. . requests to be tab 1 e driven •

The operator request table is in two parts. The first part
_of. the table consists of a segment named II request_text11

·;, ___ ,,,of ascii text, defining possible operator requests. This
··•• part, is the part that is input at system initialization

time·and goes into the system control directory (pathnames
> srstem_process_reserved_storage > sys control). The
asc i text is a sequence of lines, one Tine per request.

·.On- each 1 ine appear 3 i terns, separated by semicolons 1
(•·. ·; . .;

1)··. , .the name of the request (~ 32 chars);

2) the name of the proc~ss or process_group to which the
request should be reflected, e.g., ans_service (~32 chars),

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION B;J.1.01 PAGE 9

3) the name of a segment associated with the request# to
be created in the request directory (~32 chars)

An extra semicolon at the end of the last line signals
end of table.

The second part of the table is a PL/I structure into
which system control writes pertinent information during
initialization concerning the requests.

The structure is as follows

dcl 1 request_table external static#

2 n_requests fixed bin (17)# /*number of requests
i n table,'.-/

2 requests (100)#

3 name char (32)#

3 segment_name char (32)#

3 process_name char (32)#

3 process_id bit (36)#

3 ev_chn bit (70)1

/*name of request*/

/*name of segment
associated with
request.,\-/

/*name of process
request is to be
reflected to*/

/*id of process and
event channel to
which event should
be reflected*/

System control fills in the last 2 items as they become
available.

System control also keeps a table of possible operator
functions.· This table ls used to fill in the system operator-s
function table when he reports in. When other operators
report in they get a function table with no entries.
When a function ls delegated to an operator then it is
taken out of the system operator's function table and
placed in the other operator's table. This table of
possible operator functions is in two parts: an ascli
segment which comes in at system initialization time and
a PL/I structure kept in external static. The ascii text#
"op_functions_text" in the system control directory

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BO .1 .01 PAGE 10

(pathnames> system_process_reserved_stora~e> sys_control),
is a sequence of lines, one line per function. On each
line appear 4 items separated by semicolons.

1) function name;

2) yes or no. depending on whether the function is an
unsolicited request or not. An example of an
unsolicited request is a request from a user asking
the operator to mount a certain tape reel;

3) name of a function_here procedure. This is a procedure
which established interprocess cormnunication between
the operator's process and the system process v11hich
is associated with the function. This entry may be
nu 11 J

4) name of an attach here procedure. This is a procedure
which attaches to-the operator's process any non-console
I/0 device which the operator will use in his work, for
example a cathode ray tube. This item may be null.

An extra semicolon at the end of the last line signals end of
table.

The PL/I structure is as follows,

declare 1 op_functions external static,

2 n_fcns fixed bin (17),

2 fens (1 00).

3 name char (32),

3 op_name char (24),

3 unsol_req bit (1),

3 n_hpc fixed bin (17),

/* table giving all
possible opera­
tor functions */

/* number of func­
tions in table*/

/* name of
function */

I* name of opera­
tor having th_is
function */ ·

/* 1 if an unsolt­
ci ted request,.
O if not*/

I* no. of charac-.
ters in attach_
proc *I

,... MULTICS SYSTEM-PROGRAMMERS' MANUAL

3 attach_proc char (32);

SECTION BQ.1.01 PAGE 11

I* name of attach
here procedure-*/

Another segment which system control creates and keeps
in its process-group directory is '1 ucp comm11 • This is
a segment which provides corrmunication-between the answering
service and user control and user control and the overseer
during login and logout of users. (See BQ.2.01 for details
about the segment).

Entries to system control

System control has one entry for initialization, sys_control
~sys_control, and one entry for reflecting operator requests,
as mentioned above, sys_control2~reflector. The second
entry is called as follows. System control creates an
event call channel over which it receives all operator
requests, as described above. It associates with this
channel the procedure sys_control2~reflector. After
initializing the system and entering the operator's name
on the system log, system control calls the wait entry
in the wait coordinator. Thereafter the wait coordinator
acts as a dispatcher for system control, returning only
when the shutdown event is signalled. Sys control2~reflector
signals shutdown to the system control process when it
recognizes a shutdown request.

ln addition to the entries sys_control and reflector system
control has one entry for each comnand which is directed
particularly to system control (except shutdown, which
is signalled over an event wait channel and hence causes
a return to sys_control~sys_control.)

Examples of such requests are the request to change system
operators or the request to split off control of some
part of operations (prime example: media management) to
an auxiliary operator. Also, the request to create a
system_process is directed to sys_control2~startup.

Another entry is sys_control3~notify. This entry notifies
the syste·m process or module associated with a function
that it must initialize itself and that it also is getting
a new operator as handler of its function.

MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL

Directories

SECTION BQ.1.O1 PAGE 12

In addition to the process and process-group directories,
system control uses three other directories, all found
in the system_process_reserved_storage directory. They
are the pit directory, the request directory and the
sy_s_contro 1 di rectory.

The pit directory (pathname:> system_process_reserved_storage
>pit_dir) contains template pits of all the sy~tam processes
which system control can be called upon to create. The
system control process group has read access to a11 segments
in this directory. This directory has all its entries
when system control begins execut ng.

The request directory (pathname: >system_process_reserved_storage
>request_dir) does not exist when system control begins
executing. This directory comes into being when system
control creates the segment needed by the Answering Service
conmands. In this directory go all the seg~nts needed
by the different operator requests and the segment called
11 request_name11 • When the operator wishes to signal a
request, first he places the request name and a return
channel in the segment, 11 request_name", then signals the
request to system control. Only the system operator and
system process-groups have read and write access to every
segment in this directory. However, all operators have
access to the segments "operator _conm'' and "operator _rep".

The system control directory (pathname:>system_process_reserved_
storage>sys_control) exists and has two ascii segments
in it when system control begins execution. These are
the segments II request_text" and 11 op_functions_text".
These give a list of all the possible operator requests
and _functions respectively. Access to this directory
is limited to the system control process-group.

System Control In Initial Multics

Initial Multics will include all of system control as
described in this section. The difference between the
initial version and later versions is that in initial
Mul~Jcs system control will accept only the following
operator requests to itself:

1) startup of system processes,

2) shutdown of the system.

Later versions will include commands to change system
operators, delegate functions to other operators, etc.

r

f

-I
~I

I

,

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION s;>.1.01 PAGE 13

Initial Multics also includes the simplification that
load control will not require a separate process but only
a system-wide table. Hence instead of creating the load
control process. system control creates the system-wide
load control table.

