
MULTICS SYSTEM-PROGRAMMERS 1 MANUAL SECTION BP.4.02 PAGE 1

Published: 11/18/66

l..lli;Dt if icat ion

Procedures for dynamic storage management
areamk_, area_$redef, allocate_, freen_
D. B. VJagner and M. D. Mcilroy

,eurgose

The implementation of the PL/I contr9J led and based storage
classes, and of varying strings. uses the procedures described
here to manipulate areas and to obtain storage from these
areas and return such storage IJ\rhen it is no longer needed.

l1fill..Lou lat ion of Areas

See BP.2 for a description of PL/I areas: an area has the form
of a fixed-point array.

The allocation routines require that the data in the area contain
certain over,1ead i nforrnat ion: see Imp 1 ementat ion, be 1 ow.
The areamk routine is used to initialize an area to contain
this information. It could be cal led explicitly by a
PL/I program for some special purpose, but it is normally
ca 1 1 ed \ivhe re needed by the comp i 1 ed code O The ca 11 is:

cal 1 a ream!<:_ (p 1 ace);

where the arguments are declared,

dcl place area ((*));

Areamk_ initializes Q..J.Q_~ according to the size found in the
dope, as described in Imp1..fil.n_entation; below.

If an area occupies the highest locations currently in use in a
segment it is possible to grow the segment and reinitialize
the area to have a ne\iv (1 a rge r) size O ,;.\n example of vJhere
this is useful might be in the Fi le System, where a directory
segment is treated as an area. The entry area_$redef
is used to reinitialize an area for a larger size. TJ1is
ca 11 is

ca 11 a reamk_$ redef (ne\t✓ s i ze. place);

with declarations

dcl newsize fixed bin (18),

place area((*));

Areamk_$redef carefully preserves the curi~ent al locations in
Qlace \111hile adjusting key items to make it seem to the

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BP .LL 02 PAGE 2

al locating routines that ~~ is De,.,vsi,e, vJords long.
Naturally newsize must be greater than the current size
of the area to guarantee that the redefinition will succeed.

~a Manaaement

The procedures al locate_ and freen_ are used for al locating
and freeing storage in areas. Their calls are:

call al locate_ (n, place, p);

cal 1 f reen_ (p);

with declarations,

dcl n fixed bjn (18),

place area((*)),

p ptr;

Allocate_ finds a block of n consecutive words, starting at an
even location, in the area p_lacg and stores a pointer
to the first word of this block into p. If no such block
exists in place, alloc_ executes a

signal area;

Freen returns a block to the area from which it was allocated.
The pointer p points to the first word of the block and
must have been obtained from a previous call to allocate_.

Implementation

In the course of use an area is divided into: (1) busv
blocks, vJhich are presently in use, (2) idle blocks, v1hich
have been busy and are now free to be reallocated, and
(3) virgin territory.

Blocks are threaded togeti1er in the follov,1ing vvay. Each block
has a trailer of one or two words depending upon the size
of the block. Wherevet· block .ilie. is mentioned in this
discussion it includes this trailer.

A short trai leL is for blocks snorter than 14 words and has the
form

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BP.4.02 PAGE 3

bit

,-------busy bit

of area header (last 3
bi ts a re 0) .

/
~-----first 15 bits of address

...-----.-------'---~---~

0

_
16 17 18 32 33~ 35si·ze

__ code (0-6)

first 17 bits of
size of next block
(last bit is zero).

The size of the block is 2;': "size code" + 2. If the "size code"
field above is 7, then the trailer is a lona trailer,
in the form

-------size

----busy bit

.------=--I~ t===-.--------=c::::::::::____71
0 1 7 18 ~32 33 35 .

~First 15 bits of address
of area header (last 3 bits
a re 0).

----First 17 bits of size of next
block (last bit is 0).

Idle blocks are classified into seventeen strata according to
their size. Stratum i is a threaded list of blocks with
sizes bet1r1een 2;"n'r i and 2;'d((i + 1) -1 . Each id 1 e block has
in its first location a chaining word with a back-pointer
in the left half and a forward-pointer in the right half.

The header of the area starts at the first 0 mod 8 address in
the area and is as follows:

"MULTICS. SYSTEM-PROGRAMMERS' MANUAL

Word 0

3

,..__ --
19

20

first data

last data

last busy

first
.
.

first

spare

next 1
size

last

last

area
address

SECT 1-01\l BP .4. 02 PAGE 4

0

17 pairs of pointers to

,,,_, beginnings and ends of ,,._,,

stratum threads.

dummy snort trailer

11 Fi rst data 11 and II last data 11 demarcate the space into 1tJhich data
may go. They are set up by areamk and are not changed
except by areamk_$redef. 11 Last busy 11 points to the last
word of busy storage.

Area_ sets up 11 f i rst data 11 and 11 last data 11 , sets 11 last
busy II to the address of the dummy trail er, makes a 11 the
strata empty, and creates the dummy trailer. Area_$redef
simply increases 11 last data 11 by the appropriate amount.

The method used by allocate_ is:

1. Pad the request ton words, where n is even and includes
the necessary trailer.

2. Determine stratum (mini such that 2**i~n).

3. Investigate consecutively that and all higher strata
until one not empty is encountered. If none go to 10.

4. Split the first block in the stfatum.

5. Construct a trailer for the first (allocated) part, and.
a pointer to it.

6. Update trailer of preceding block.

7. Remove from free list. If stratum becomes empty, zero
it.

8. Construct trailer for second (free) part, and use freen_
to get it into the correct stratum.

9. Return the pointer.

10. · If 11 last data 11 - 11 last busy" .<n then signal the area
con.di t ion. . .

,.-..

MULTICS ~YSTEM-PROGRAMMERS 1 MANUAL SECTION BP.4.02 PAGE 5

11. Construct a trailer at II last busy 11 +n, and a pointer
to this block.

12. Update preceding trailer.

· 13. Update 11 last busy".

14. Return the pointer.

The method used by freen_ is:

1. Consult preceding trailer to find length of block
to be freed.

2. Look at busy bit of preceding trailer. If preceding
block is free, remove it from its stratum and combine
it with this block.

3.

4.

5.

6.

7.

8.

9.

Compare addr of last word of this block with last_busy.
If they are equal, scratch this block. If not, go to 6.

Update preceding trailer and last_busy.

Return.

Look at succeeding block. If it is free, remove from
stratum a~d combine with this block.

Put free block in its proper stratum.

Update preceding trailer.

