
,,,,.. 

I 
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION B0.,.01 PAGE 1 

Identification 

Processor Usage Metering 
T. H. Van Vleck 

Purpose 

Published: 10/31/66 

Section 80.3.01 describes the method to be used for metering 
the number of processor memory cycles used in the execution 
of a process. 

Description 

Processor usage metering is driven by the processor interval 
timer in each processor, a hardware register which can 
be loaded and stored, and which counts dow~ by one each 
time the processor makes a memory reference. 

The basic idea in the implementation of processor usage 
metering is to record the timer when an account becomes 
responsible for the processor and again when it relinquishes 
control. The difference is taken to be the number of 
cycles which should be metered to the account. Now, an 
account can become responsible for a processor's execution 
in~ ways: 

1. a process which is charging to that account can come 
to the top of the ready list and begin execution. 

2. during the. execution of some process, a system interrupt 
may occur which causes work to be done for a different 
process, and which is charged to the account of that 
different process. 

3. during the execution of some process, a call may be made 
to the disk or drum DIM, and 1J11hi le in the DIM work 
may be done for many different processes~ charging to 
many different accounts. 

In the first case, processor-metering requirements are 
satisfied by having subroutine Swap-DBR, in the Traffic 
Controller, call a program which executes a smal 1 sequence 
of instructions to compute the time since the processor 
was last paid for and to meter this amount to the process 
which is just finishing execution. Th'e sequence looks 
like this: . 

call store_timer(timenow); 

cycles= time_last_paid - timenow; 



MULTICS SYSTEM-PROGRAMMERS' H<-'\NUAL 

call meter_CPU(cy~les, index); 

time_last_paid = timenow; 

SECTION BO.J.01 PAGE 2 

The quantity 11 time_last_paid 11 is kept in the Processor 
Data Block (BK.1 .02) for the particular processor, and 
11 index 11 is an index into the 1--1MT ·for the entry for the 
process's account (B0.3.07). 

For the second case, that of system interrupts, it is 
sufficient to require every interrupt handler to save 
the timer at the beginnin~ of its execution, and at the 
end of the interrupt service, to compute the number of 
cycles 11 stolen 11 , meter it to the account of the process 
responsible for the interrupt by calling Meter _CPU, and 
reload the timer with its original value. 

The third case, that of the disk and ~rum DIM's, can be 
treated more or less like the second. That is, the modules 
is question must keep their own accounts and report the 
usages to accounting procedures, by a call_to 11meter_CPU 11 • 

In all three cases, usages must be recorded for accounts 
at times when page faults are not permitted. Therefore, 
any process which may have cycles metered to it must have 
a poiriter to an entry in the Active Meter Table. 

Implementation 

When a process is entered into the Active Process Table 
by the Process Acti-vator, the fol lowing call is made: 

call start_CPU_meter(account, AMTindx); 

this ca 11 

1. searches for an entry for the given account in the AMT. 
If none is found, one is created. If an entry already 
exists, its use count is increased by one. 

2. returns an index into the AMT for storage in the APT. 

Whenever a process switch is made or an interrupt service 
for a process occurs, the following call is made: 

call meter_CPU (cycles, ~MTindx); 

this call adds cycles, the number of CPU cycles used, to the 
appropriate part of the AMT entry for the account specified 
by t:\MTindx. 



I 
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.p.01 Pf-\GE 3 

When a process is deactivated, this call occurs; 

call stop_CPU_meter (gMTindx); 

the call decreases the use count in the AMT entry by one. If 
the use count goes to zero, updating of the ~MT to the ADS is 
done and the AMT entry is freed.· 


