
MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

·The efficient accessing of data.

James F. Gimpel

Purpose

SECTION BN.9,O1

PubLished: 5/5/67

The purpose of this section is to indicate how

source language decisions can influence the size and com­

plexity of machine code needed to access data.

Abstract

Three major themes are sounded. First, data

should be made adjustable only with good reason and with

care. Second, the sheer number of instructions needed to

access certain kinds of packed bit strings indicates that

special attention be paid to the design of packed aggregates.

Third, the inherent inefficiency of accessing certain kinds

of parameters implies that the selection of arguments to be

passed across call boundaries should not ignore efficiency

considerations.

Introduction

We regard as data, for the purpose of this section,

strings, arithmetics, and pointers. We are ignoring label

and area data, as their effect on efficiency is relatively

small.

Let alpha, beta, gamma and delta be arbitrarily

qualified names restricted only in that they do not have

pointer qualification. Then a PL/I statement of the form:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9,01 PAGE 2

alpha= beta+ gamma-> delta;

is translated into assembly language as four separate data

accesses. One to load the value of beta into an active

register (the "a" or "aq" register), one to load a base

register (bp) with the value of gamma, another to add the

value of delta to the active register (using, of course, the

previously loaded base register) and finally one to store

the contents of this active register into alpha.

A data access can be more or less complex depend­

ing on the extent of qualification and, as importantly, the

degree of adjustability of the data item with respect to the

first physical location of its containing aggregate.* For

example, in the structure,

*

dcl 1 alpha,

2 beta fixed,

2 gamma (-3:n) fixed,

2 delta fixed;

In most cases, the compiler has little difficulty in
obtaining the first physical location of an aggregate;
but, if any of its parts is adjustable, the compiler has
no idea where the last location of the aggregate lies.
·This asymmetric with respect to storage allocation
weaves an ~symmetric thread through much of this section.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.O1 PAGE 3

the offset of element alpha.beta from the first physical

location of the aggregate alpha is known to the compiler

(viz. O); the offset of alpha.gamma (i) is known given the

value of i (viz. 4+i); the offset of alpha.delta is not

known and dope must be interrogated to determine this value.

Those elements of an aggregate for which this offset can be

computed without referencing dope are called directly­

addressable (a formal procedure to determine whether a

data item is directly-addressable is given in the appendix).

As another example, the elements of the array

declare alpha (n:25);

are not directly addressable because the lower bound in

addition to the subscript must be known in order to access

a scalar element of alpha.

Code needed to access directly-addressable data

is substantially more compact than code needed to access

data which is not directly addressable. There are a few

simple rules which, if observed at the source level,

serve to increase the number of directly-addressable data

i terns.

Definition: An adjustable data item is an array with

an adjustable bound or a string with an adjustable length,

or an aggregate containing one of these. Note that varying

strings are not adjustable; they occupy a fixed number (viz.

two) of words in a structure.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.O1 PAGE 4

Rule 1: If a structure has adjustable d~ta items, put

the adjust~ble items last.

Example:

Faster declare 1 alpha,

2 beta bit (12),

2 gamma bit (n);

Slower declare 1 alpha,

2 gamma bit (n)'

2 beta bit (12);

Rule 2: If an array has an adjustable bound, make it

the first upper bound (if possible).

Example:

Faster

Slower

Example:

Faster

Slower

declare alpha (O:n) fixed;

declare alpha (-n:O) fixed;

declare alpha (n,15) fixed;

declare alpha (15,n) fixed;

Rule 3: Do not use an asterisk as a bounds ir_dicatqr

if only the first upper bound is adjustable.

Example:

Faster

Slower

a : pr oc (p, n) ;

declare alpha (n) based (p);

etc.

a: proc (alpha)

declare alpha(*); etc.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 5

It is a weakness of the language (PL/I) that a bound of

the form (l:*) cannot be given.

The Four Part Translation Sequence

A data access to a name of the form

Al.A2 An

where each Ai is a possibly subscripted variable is decomposed

into four distinct phases.

1. Subscript computation

2. Subscript multiplying

3, Address-preparation

4. Operation

These phases are not necessarily contiguous. Sub­

script computation for all data accessing is done immediat.ely.

Parts 2, 3, 4 are contiguous for directly-addressable data

items. The first two are null if no subscripts are present.

The third is null in certain cases and may be elaborate in

others. The fourth is always present. It may be one in­

struction like the load of a fixed point number er it may

be several instructions like the store of a packed bit

string. For example

declare 1 alpha (20) static,

2 beta fixed,

2 gamma fixed;

declare (n,m) fixed;

alpha (n+m).gamma = 13;

r

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 6 ·

This last statement -is an assignment statement consisting of

two data accesses, a load and a store. The first access

consists of simply loading the a-register with 13. Thus

parts 1, 2, 3 for this data access are nullj the accessing

associated with storing illustrates the 4-part translation

sequence indicated above.

1. Add n and m and store into a temporary (done

before the load of 13).

2. Multiply the contents of this temporary by 2

and load into XR6 (done by a subroutine).

3.

4.

Set base pair bp pointing to the first location

of static storage for this segment (done by

eapbp lpl .is,*)

sta bpi alpha.alias+4-2+1,6

All except perhaps the last is self~evident. Alpha.alias

is a symbol of the form xx ____ which is set to equal the

offset from the static storage region associated with this

procedure to the location reserved for the aggregate alpha.

The +4 represents the size of the specifier which is allo­

cated into the first four locations of this region. The

quantity -2 represents the offset to the virtual prigin of

the array (the hypothetical element with O subscripts [see

the appendix]). The +l represents the offset of element

gamma from the start of an alpha-type structure. The ,6

represents the effect of the subscript. Note that structure

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.O1 PAGE 7

accessing for directly-addressable data items beco~s cheap.

The assembler does the work and not the compiled code.

Data Accessing Without Subscripts

If a qualified name conta~ns no-subscripts then

parts 1 and 2 of the data access are null. The whole data

access consists of an address preparation and an operation.

Address-Preparation

Address-preparation code is used to place the

machine in a state such that the data item of interest can

be referenced in the next instruction.

In general, the address-preparation code depends

only on storage class; the number of instructions for each

class is given in Table 1.

As indicated above, the accessing for controlled

storage does not include loading a base pair with the ex­

pressed pointer. The number of instructions to do this is,

.in turn, subject to the same consideration as other data

accesses.

Summarizing the results of Table 1, all .storage

classes lead to a small number of address-preparation in­

structions except parameters with specifiers (i.e., strings,

structures and arrays).

Operation

Loads and stores and many operations with aligned

scalars take one instruction. Access to a pointer used to

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 8

TABLE 1

Number of instructions in the address-preparation

sequence (for directly accessLble data items).*

Storage Class of Outer Aggregate Number of Instructions

A.

B.

C.

D.

E.

*

Automatic

(1) not adjustable 0

(2) adjustable 1

Static

(a) internal 1

(b) external 0

Based 0

Constants 0

Parameters

(a) unpacked aggregates 5

(b) strings 5 in line plus

10 in sub-

routine

(c) parameters w/o specifiers 2

There is an extra instruction for automatic and parameter
data if the access is made in a block other than where the
declaration is made.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN. 9. 01 PAGE 9 ·

qualify a based variable takes one instruction. The trouble

srots are with strings. Strings of unknown length or strings

whose length is greater than 36 bits or varying strings are

handled by runtime subroutines. Packed strings, depending

on their posit_ion with;i..n a word, are more difficult to access

than aligned strings. Table 2 gives the number of instruc­

tions needed to load and store packed strings, aligned

strings and parameter strings. Incidentally, the algorithm

which the EPL compiler uses to pack and align strings is

not commonly known and is given in the appendix.

As Table 2 indicates, loading and storing of

parameter strings is even more awkward than with packed

strings and no improvement in the situation is anticipated.

The unholy solution is to assign the value of otherwise

frequently used string parameters to strings in automatic

storage.

Although a programmer cannot explicitly declare

a structure to be packed, he may, bj insertion of a foreign

element (e.g., an arithmetic variable) into an otherwise

packable structure, cause the structure to become unpacked.

By this and other techniques the programmer has considerable

control over packing and unpacking. This raises the follow­

ing question: should he pack? For example:

,..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 10

TABLE 2

Minimum number of instructions needed to carry out

primitive operations on nondimensioned strings whose length

is known and less than 36 bits.

T pe of String

A. aligned

B. within a packed aggregate and

(1) left adjusted in a machine word

(2) wholly contained within a woid

but not (1)

(3) straddling a word boundary

C. parameter

(1) 1 bit 1 o ng

(2) more than 1 bit long

declare 1 alpha,

2 beta 1 bit

2 beta 2 bit

2 beta_3 bit

2 beta 4 bit

Instructions to

Load

2

2

3

4

3

6

(18),

(18),

(18),

(18);

Store

1

3

4

6

4

12

is packed and we save two words of storage. Since the

elements were declared, presumably they are somewhere,

in somebody's program, each accessed. Assuming each is

loaded just once and stored into just once (surely modest

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 11.

figures) we lose, by- Table 2, a total of 16 instruction

locations, not to mention increased accessing time. More

frequent accessing more grossly outbalances the situation;

as would bit strings more poorly coordinated with word

boundaries.

This is not to imply categorically that packing

always leads to inefficiencies. It could be that there

are many repetitions of the packed data, such as in arrays*

or, for example, because all entries in a file directory

have the same format. In such cases it may be that there

are far more instances of the data being accessed in core

at any given moment than there are instructions to access

the data.

Another good reason to pack is to faithfully

represent data already formatted by the hardware such as

the DCWs in the I/0 system.

It is therefore difficult to give general rules

to cover all situations. It is almost never a good idea

to have packed data in automatic storage but beyond that

maxim all that can be stated is that each situation should

be evaluated in its own merits. Table 2 should b~ helpful

in this regard.

* Arrays of packed data deserve special cautio~~- They are
treated in the next section.

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 1~

Assuming we are packing, what are good rules to

fo;Llow:

Rule 1: Try not to straddle word boundaries.

Example:

Faster declare 1 alpha,

2 beta bit (36),

2 gamma bit (26),

Slower declare 1 alpha,

2 gamma bit (26),

2 beta bit (36),

Rule 2: The most frequently accessed strings should

be left adjusted in a word.

Example: Suppose beta is used far more frequently

than gamma.

Faster declare 1 alpha,

2 beta bit (18),

2 gamma bit (18),

Slower declare 1 alpha,

2 gamma bi:t (18),

2 beta bit (18);

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.O1 PAGE 13

Data Accessing With Subscripts

When subscripts appear in a name we enjoy the

fullblown 4-part data accessing sequence mentioned earlier

and consisting of

(1) Subscript computation

(2) Subscript multiplication

(3) Address-preparation

(4) Operation

If the array is directly addressable, the address prepara­

tion is identical to the nonsubscripted case. The opera­

tion for aligned data is identical except for modifying

the address with XR6. Arrays of packed strings as well

as (1) and (2) will be treated in detail here.

Subscript Computation

Subscript~ generally speaking, are computed and

stored in a temporary. In the current compilers this is

done in all cases except when the subscript is an integer

variable in automatic storage used at the block level in

which declared.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 14

Example:

Faster a: proc;

declare alpha (100) fixed;

b: begin;

declare i fixed;

c: do i = 1 to 100;

alpha (i)

end c;

end b;

end a;

Slower is to leave out the declaration of i.

r
MULTICS SYSTEM-PROGRAMMERS' MANUJlT_, SECTION BN.9.01 PAGE 15

Explanation: If i is not specifically declared in the

inner block, b, i is by default declared in the outer block.

Then not only does it require an extra instruction to access

i within block b but when used as a subscript i is loaded

from the previous stack frame, stored into a temporary in

the current stack frame and is reloaded at subscript multi­

plication time.

Subscript Multiplication

For arrays whose element size is one word, the

"subscript multiplication II code consists a load of an

index register (very cheap).

If, on the other hand, the element size is not

one word, some nontrivial subscript multiplication must be

performed. This is done by subroutine but the whol~ thing

takes three instructions of in-line code not to mention the

execution time.

Rule 1: All things being equal, .make array sizes one

word.

Example:

Faster declare 1 alpha (100),

2 beta bit (18),

2 gamma bit (18);

Slower declare 1 alpha,

2 beta (100) bit (18),

2 gamma (100) bit (18);

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 16

Example:

Faster declare 1 alpha,

2 beta (100) fixed,

2 gamma (100) fixed;

Slower ·declare 1 alpha (100 L
2 beta fixed,

2 gamma fixed;

The next most preferred size of an array element is a

multiple of words. This is always the case unless the

array is packed.

Rule 2: All things being equal, and failing the previous

rule, make the array size a multiple of words.

Example:

Faster declare 1 alpha (100),

2 beta bit (18),

2 gamma bit (54);

Slower declare 1 alpha,

2 beta (100) bit (18),

2 gamma (100) bit (54);

Rule 3: Failing the two previous rules coordinate

array elements with word boundaries in as orderly a manner

as possible.

Example:

Faster declare 1 alpha,

2 beta (0:5) bit (12),

2 gamma bit (1);

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 16a

Slower declare 1 alpha,

2 gamma bit (1),

2 beta (0:5) bit (12);

Rule 3 also makes good sense from the standpoint

of program hygiene. For example, dumps are easier to look

at. The following rule is considerably less obvious;

statements supporting the conclusion follow the rule.

Rule 4: In packed arrays attempt to align the virtual

origin of the array with a word boundary.

Example:

Faster declare 1 alpha,

2 beta bit (12),

2 gamma (5) bit (12);

r

,...

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 17

Slower declare 1 alpha,

2 gamma (5) bit (12),

2 beta bit (12)j

Explanation: In the first case the virtual origin*

of gamma (i.e., alpha.gamma (0)) is aligned with a word

boundary, viz. the first physical location of alpha. In

the second case, it falls as offset 24 from a word boundary.

Operation (Packed Arrays)

If the array is packed and the multipliers are

multiples of 36 bits then the operation code required to

load and store strings is the same as indicated in Table 2.

That is, the operation code is exactly as if the string or

structure were not dimensioned. If, on the other hand, one

or more of the multipliers is not a multiple of 36 bits,

. complexities are introduced.

Definitions: Let m1 ,m2 , ... ,mn be the multiplierst

used in accessing a packed string. Then the precessing

resolution R is defined as the greatest common divisor of

m1 ,m2 , ... ,mn and 36. That is

* See appendix for explanation of virtual origin.

t Multipliers for ar~ays are discussed in the appendix.
For packed arrays they are measured in bits.

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 18

Example:

declare 1 alpha (100),

2 beta bit (1)

· 2 gamma bit (9) ,

2 delta bit (17);

Then the multiplier for this array is 27 bits. The

precessing resolution R = gcd (27,36) = 9. This means

that word boundaries can potentially crop up every nine

bits. This is indicated schematically in Figure 1.

0 1 10

11 gamma I

l
V

I
27;

Virtual Word Boundaries

Figure 1

Note that the structure layout was not startlingly

good. Since gamma straddles a virtual word boundary, it can

sometimes straddle a real word boundary (for some subscripts).

Such strings are especially difficult to access and we have

a special name for them.

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 19

Definition: An array of strings is said to be contiguous

if for all subscripts (not necessarily within the bounds of

the array) no string scalar straddles a word boundary; it

is called discontiguous if every such scalar straddles a

word boundary; it is called idiotic if some of the scalars

do and some of the scalars do not.

For every arrayed bit string there is a compile-

time offset of the oth element from the base of the aggregate.*

Call this offset C; it is measured in bits. In the above

example the offset C for beta is -27, for gamma it is -26,

and for delta the offset is -17. Word offsets do not con-

cern the compiler but bit offsets do. Define

·Then

Let

c = mod (c,36)

in the previous example

for beta C = mod (-27,36) = 9

for gamma C = mod (-26,36) = 10

for delta C = ~d (-17,36) = 19

£ be the length of a scalar member of a string array.

Remark: Let K = £+mod (c,R). Then a string is

(a) contiguous if K ~ R

(b) discontiguous if K > 36

(c) idiotic if R < K < 36.

Hence large precessing resolutions tend to

squeeze out idiotic strings. In the limiting case when

* When this compile-time offset is added to the base of the
aggregate, the virtual origin is obtained (see SectLon BN.9.0la).

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 20

the precessing reso+ution equals 36, we have no precessing

and hence no idiotic strings.

In the previous example for beta,

K =£+mod (c,R) = 1 + mod (9,9) = 1

and hence beta is contiguous (as are all strings of length l);

For gamma,

K =£+mod (c,R) = 9 + mod (10,9) = 10.

K is greater than R but less than 36 and hence gamma is

idiotic. For delta,

K =£+mod (c,R) = 17 + mod (19,9) = 27

and so dalta is also idiotic.

Definition: A packed array of strings is synchronous

if c < R.

The semantics of this definition derive from the

following: Let Ebe the result in bits of multiplying

the subscripts by their respective multipliers. Let V

be the word containing the virtual origin of the array.

Then, if the packed array is synchronous, the first bit

of the string scalar will always fall in word V + [E/36],

and thus the array is spacially synchronized with the

subscript. The compiler can compress code if an array

is synchronous independently of whether it is contiguous,

discontiguous or idiotic.

r

,...

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 21

TABLE 3

Minimum* instructions required for primitive

operations on elements of packed arrays. The strings are

assumed to be nonadjustable, nonvarying and no longer than

36 bits.

1.

2.

*

Type of String

Synchronous

(a) contiguous

(b) dis contiguous

(c) idiotic

Not Synchronous

(a) contiguous

(b) discontiguous

(c) idiotic

Operation
Load Store

3 6

4 8

6 12

5 8

6 10

8 14

These numbers seem to be at or near the theor.etical lower
limits given the machine and the instruction set.

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 22

Table 3 indicates the number of instructions

required to perform primitive operations on these strings

given the category in which they fall.

Returning to our previous example we find that

for beta we need five and eight instructions to load and

store respectively. For both gamma and delta we need eight

and fourteen to load and store. If we were to rearrange

the order of beta and gamma, then both gamma and beta would

be contiguous. If, moreover, we changed the bounds of the

array to

declare 1 alpha (0:99),

2 gamma bit (9),

2 beta bit (1),

2 delta bit (17);

we will have made gamma synchronous. We now require only

three and six instructions to load and store ga~ma compared

to the previous eight and fourteen. The number of instruc­

tions required to access beta and delta remain unchanged,

however.

This is not very much of an improvement. The

situation alters dramatically, however, if a dummy bit

string long enough to fill out a word is inserted into

the structure. For example:

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.9.01 PAGE 23

declare 1 alpha (100),

2 beta bit (1),

2 gamma bit (9),

2 delta bit (17),

2 filler bit (9);

The array size is now one word so that we save

about 10 instructions in the subscript multiplication phase

of each data access. In addition, by referring to Table 2,

beta can be loaded and stored in two and three instructions

respectively; whereas gamma and delta will both require

three and four. This represents a dramatic saving in each

data access offset only by the fact that 25 locations of

storage have been lost through a partial unpacking of the

structure.

