MULTICS SYSTEM-PRCGRAMMERS® MANUAL SECTION BN.5.01 PAGE 1
Published. 33/07/67

Identification

Implementation of EPL Blocks
D. B. Wagner and M, D. McIlroy

Purpose

The PL/I definition of a block is, ",..a collection of
statements that defines the program region--or scope--
throughout which an identifier is used as a name, It

also is used for control purposes'" (IBM form C28-6571-3,

p. 19, which should be seen for a detailed discussion

of blocks from the point of view of the language). A

block may be an external procedure, an internal procedure,
or a begin block, The most important fact about the
implementation of blocks is that each generaticn of each
block has a correspendlng frame in the stack, This section
describes the mechanisms used for initializing and terminating
these blocks, and for accessing variables of containing
blocks,

N

Exterral Procedures

Ignoring the fact that segments may be bound together

(for which see The Binder, MSPM BX.1L.,01) external procecures
correspond one-for-one with procedure segmenus Every

PL/I pregram segment is an external prccedure with one

or more external entries, The first label on the First
procedure statement in the program segment is considere

the “procedure name'' and the “pilmary entry point'; in

EPL (but not in PL/I) this namz is used as the name of

the procedure segment.

An external entry is of ccurse called using the standard
call-save-return sequences described in B8D,7.02-03 (with
cne trivial change noted belcw), An entry beta in segment
alpha is referenced using the notatio

alphatbeta
and the simple name beta with no "§" refers to

betaibeta

MULTICS SYSTEM=-PROGRAMMERS ™ MANUAL SECTION

Internal Procedures

In EPL internal procedures are called using the standard
‘call-save-return seguences with the argument list modified
by attaching to it the value of the stack pointer for

the embracing bleck, This modification is described in
BD.7.02. This implementation is mandatory for internal
preccedures that may be called firom another segment, As

an examplie consider the statements:

: begin;
: proc;

a
b

A call to b (no matter whence) incluces in the argument

list the stec’t pointer for the generation of storags for

a. (of course a must be active at the time of the cali

to b. This stack pointer is used by b for accessing variables

in embracing blocks,.

This situation is complicated by the fact that an Internal
entry may be passed as an.argument, and thus may be called
from procedures which-have no way of kKnowing the stack
level of its embracing block or even whether it is internal
or external, To solve this problem, whenever an entry

is passed as an argument, the object passed is a six-word

" block (identical to a labzl) as follows:

-------- T S SR entry

. ITS giving stack pointer (for
aaiuiebalale et bRt Rt Lol ~-==--=- embracing block if internal;
' - | dummy if external)

2 spare words for compatibility
with PL/T-

Whenever any entry parameter is called, the caller includes
the stack pointer value from the entry parameter in the
same way as it would be passed in a czll to an internal
procedure, xternal procedures ignore this extra, while

MULTICS SYSTEM-PRCGRAMMERS” MANUAL SECTION BN.5.01 PAGE 3

internal procedures use it to create a display without
caring about its source,

Begin Rlccks

In EPL a begin block is implemented precisely as an internal
procedure, so that the statements

a: begin;
end a;
might compile to something like

a: . . . (set up argument list for no arguments,
but with value of sba=sp attached)
call xx0239 (argument list)
tra xx024u40
xx0238: save
return
xx0240: null

The display

As was mentioned earlier, an internal procedure or begin
block receives attached to its argument list the value

of the stack pointer for its statically embracing block,
In EPL it uses this to enable it to refer to outer blocks
by settlng up the display, which is a 1ist of ITS pairs
giving stack levels for a11 statically embracing b]ocks
The display starts at a leed location in the stack frame
for any internal block and for a block at level i (wnere
an external procedure is at level Q) is 2%*1 words long.
To refer to a variable at location a in the stack frame
for an embracing block n levels back, the code might then be:

eapbp spldisplay+2+m-2, %

1da bola

MULTICS SYSTEM-PRCGRAMMIRS® MANUAL SECTION BN.5.01 PAGE L

When an internal procedure or begin b]ock at level 1 is
entered, it sets up its display by 1n5@rt1ng the stack
pointer “attached to the argument list into the display

and then appendlng a copy of the display from the embracing
block (which is 2*i - 2 words long).

Proleoques

N Epi1o§u§§J and the Non-Local Go To

Each bleck (external or internal) begins with a prologue

and ends with an epilcaue, The prologue performs various
initialization tasks such as setting up the display, creating
specifiers and (scmetimes) dope for autcmatic variables,

etc, Tt is nct terribly important in this discussicn,.

The epilogue performs a number of tasks which must be
done when a block is terminated, These include;

1) Reverting on-conditions

2) Freeing the storage occupied by
automatic varying strings

3) Popping up the epi]ogue stack

The problem with ep11ogues is shown by the follcwing series
of statements;:

a: begin;
q: . Q.I
b: begin;
C: Beélr'w;
éo.tr.a g
end c;
end b;

end a;

rv

MULTICS SYSTEM-PROGRAMMERS ® MANUAL SECTION BN,5,01 PAG

The statement 'go to q” is a non-local go_to: when it
is executed, the stack level must be brought down to the
level of a; furthermore, the epilogues for both of the
blocks ¢ 2nd b must be por ormed,

For the benefit of the ncn-local go to, a push-down list
of epilogues to be performed is kept in a static segment.
In]ocaulon

< trap_ >|[epi]
is a pointer to what is called the current epilogue handler.

The value of this pointer is initially null, An epilogus
handler has the form of the following structure:

dcl 1 epilogue_handler ctl (p),
2 loc ptr, /* location of epilogue */
2 stack ptr, /= stack level of block ¥*/
2 back ptr; /* to previcus epilogue handlers

This piece of data is normally located in the stack frame
for the block to which the epilogue belongs,

The prologue for a block with an epilogue executes the
following sort of code:

dcl my_handler autc like epilogue_handler;
my_handler,loc = . . .; /* location of epilogue */
my_handler,stack = , , . /* current sb&—sp */
my_handler back=trap_$e pf;

trap Jepi_ = addr (my_handler);

At the end cf the epilogue, the following statement serves to
revert to the previous epilogue hand]er: .

trap_$epi_ = my_handler.back;
The epilcgue is a sequence of code which performs its task,

reverts the epilogue pointer trap_%epi and finally executes
a return sequence, :

-—

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BN.5.01 PAGE 6

Because of difficulties with asynchronous interrupts, an
attempt is made to code the epilogues generated by EPL
with the following doctrine:

"It will be harmless to execute all
or part of an epilogue more than once",

The chain of ep11ogue handlers described above is used

by the run-time routine synep_ which perfcrms a so-called
"synthetic epilogue' for the non-local go to. Synep_

is described in BN.7.03.

EPL”s Variation of the Save Seguence

There are two problems with the save sequence presented

in BD.7.02: it does not permit stack frames longer than

16k words and it does not permit use of a single copy

of the code (which is six words long) by every procedure

and block in a program, Thus the following slight variation
of the save sequence is compiled by PL/I:

eax7 t load index register 7 with length of next frame

tsxO0 .sv tc save subroutine

.Sv: eapbp sp|18,*
stpsp bpl16
stpap bpl25
eapap bpl0,7
stpap spl18

eapsp bpl0O
stb sp|0
tra 0,0

Since EPL .never uses the entrance value of aba—ap except as it

is stored in sp|26, it is unimportant that this save sequence
"clobbers! that base pair,

The iInstruction above,

stb splC

saves the value of the base pair 1b<«w-1p for use by internal
procedures in case they are entered from outside the current
segment,

