
r MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.5.00 PAGE 1

Published: 03/04/57

Identification

Global Strategies in EPL
D. B. Wagner

Purpose

By 11 global strate~ies11 in EPL we mean the details of
implementation which affect communication between separately
compiled procedures, and also those details which debugging
aids ~nd run-time library procedures depend upon for correct
operation. Most of these details are the same as in PL/!
and are contained in the BP. Sections of MSPM, especially
BP.2.01, BP.2.02, and BP.4.00.

The Sections BN.5.00 - BN.5.02 give the details of EPL
implementation which are for one reason or another missing
from the BP. Sections or which are different in EPL and
PL/I. The present Section gives details of several minor
differences in global strategy and gives references to
Sect ions which de?cr ibe major di ffer.ences.

Double Fixed-Point Numbers

BP.0.01 states that II the length of the largest number
in the implementation11 (the number N discussed on p.32
of the 11 -311 manual) is 71. EPL instead takes th is number
to be 63.

The result of a fixed-point division is always floating-point,
since EPL cannot support the scaled result required by
PL/I (1 1 -311 , p.32).

The above two points are language issues, not strategy
issues. EPL programs will have no difficulty communicating
fixed-point numbers with programs compiled by other versions
of PL/I in Multics, since fixed-point numbers in EPL are
represented as specified in BP.2.01. The error comment
from EPL's Pass 2, 11 EPL double fixed incompatible with
PL/I 11 , is just noise.

Label Variables

Section BP.2.01 notes that label variables are six words
long, the last two \-vords containing 11 error-checking information11

\/1.nich ·is not yet specified .. EPL labels are six words
long also, but the last two words contain garbage. [This
is a bug: there should at least be an indication that
no error-checking information exists. However it is not
at all clear what ought to go in those two words so there
is no point to worrying about it.]

..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.5.00

Implementation of Storage Classes

The implementation of storage classes is important to
debugging aids and also to dat~-directed input when· and

PAGE 2

if that becomes a reality. Section BP.4.00 describes
storage classes in PL/I and everything there applies to
EPL except for the description of internal static storage.
Since the fancy mechanism of II unique iden ti f iers11 is not
available in CTSS and on the GE 635, the internal static
storage for an external procedure 2 is contained in a
block of storage at

<stat--> I [a J

which is grown at first reference.

The observant reader will notice that there is some danger
of naming conflicts here, in particular of some other
external proced~re using an external variable named 2 .
[This can be lived with simply because external variables
are seldom used in Multics development. Ho1,rJever, there
is a fix which is_so simple that it reatly ought to be
done: the name for the in-reference into stat should
be formed by concatenating a 11 • 11 with the segment name.]

. Blocks, On-conditions, and the Non-local Go To

The implementation of blocks in PL/I has not yet been
documented. See BN.5.01 for blocks in EPL.

The implementation of Q.O.-cond.itions in PL/I will use Multics
primitives which are not y,2t available. The present EPL
implementation is described in BN.5.02.

The present EPL implementation of the non-local £Q to
is described in BN.5.01. It will be unsatisfactory as
soon as the protection mechanisms begin to be used in
Multics.

Varying Strings·

Only the II long11 form of varying strings is used in EPL.
See BP.2.01.

Non-Standard Specifiers

The sp·ecif iers for string constants in EPL do not use
its pairs as specified in BP.2.02 but !ri~tead use §L_g.
indirect words. Thus a procedure rece1v1ng a non-varying
string as an argument must always access its specifier
through indirect references.

