MULTICS SYSTEM-PROGRAMMERS * MANUAL

Identification

TMGL
Robert R. Fenichel and M. D, Mcllr

Purpose

This section describes the syntax
TMGL is of interest in Multics bec
is written in TMGL.

Structure of this Section

The remainder of this section cons
subdivisions as follows:

A, Components

B. Grand Plan

C. Cutput Tables and Definitions
D. Characier Set

E. Syntax

F. System Funciions

G. System Cells

H. Trail-following

I. Sample Programs

J. Dirties

K. References

Those of these pieces which are no

are made intelligible by others,
can be recommended,

SECTION BN.L4.02 PAGE 1
Published: - O4/17/57

oV

and semantics ot TMGL.
ause the EPL compiler

ists of eleven

Page
2
7
7
9
10
18
27

t motivated by others
No single order of reading

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BN.4,02 PAGE 2

For tutorial purposes, the most useful portions of this
description are thought to be subsections A, B, C, H,

and I. There is no particular order in Wthh these sections
should be read, however, Instead, the reader is advised

to utilize a chimneying technique, climbing not one wall

or another, but rather all at once, Section BN.,4,02 A

is an index to this section, '

A, Components

A TMGL program consists largely of sequences of components.
Components are frequently the names of syntactlc types

for which representatives are being sought in the input
stream, Other components alter internal tables, and still
others test the contents of these tables, Fina11y, an
important class of components is concerned with the output
generation process., In brief, when a component C is matched,

1. It may or may not advance the scanning of the input stream.

2. It may or may not have side effects on the values of
compiler parameters or contents of compiler tables,

3, It may or may not add one line to the output table being
produced for the larger component C? of which C is a part,
In particular, this new line will be either

a, A pointer to the output table which was produced
as the substructure of C was matched, or

b, A def1n1t10n of the output to be produced for C”
This definition may include literal information as
well as pointers to previous entries in the output
table of C~,

b, It may succeed or fail, For example, C may test the
input stream for the presence of a certain literal string.
If this string is not present, this component will fail,
A component which fails does not add anythlng to any
output table, nor does it advance the scanning of the
input stream.

A component may be matched because it is a subcomponent
of another componzant, or -- via a mechanism which will

be described later -- it may be matched at the top level,
For example, the entire compilation process might consist

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.4.02 PAGE 3

of matching the component '"program". After a ccmponent
has been successfully matched at the top level, the output
table that it has produced is activated. To activate

an output table is to generate ouiput accordlng to the
specifications of the definition at the end of this table.

The output just mentioned is appended, as soon as it is
produced, to the object stream, The other output streams
of TMG are the console stream, usually used for infrequent
diagnostic messages, and the BCD stream, usually used

for a printable listing.

Types of Components

This subsection includes a number of quasi -~ BNF forms,
Do not trust them too much. The real syntax of TMGL is
given in subsection E.

1. Literal string components
A literal string component is written

$<string of length n>}%
or

<name ot string of length m>
The mechanism for naming character classes is described
in subsection E, This component will fail unless the
next n characters of the input stream are those of the
displayed or named string. After this component has been

successtully matched, the input scan is advanced by n
characters,

2. Character class components
A character class component is written
<name of character class>
The mechanism for naming character classes is described
in subsection E The character-class compcnent will fail
if the next character of the input stream is not a member

of the namad class., After this componant has been succes:;u11y
matched, the input scan is advanced by one character,.

MULTICS SYSTEM~PROGRAMMERS® MANUAL SECTION BN,4.02 PAGE 4

3. Starred character class-components
A starred character class component is written
<name of character class>*
This component will always succeed. It has the effect
of spacing forward in the input (say, n characters) until

the character "under the read head' is not a member of
the named class.

The n=0 case is perfectly legitimate,
L, OR Components

An OR component is written

<component> ,0OR, <component>
If the first subcomponent of an OR component succeeds,
the second is ignored, 1If the first fails, the second
is matched, 1If and only if both subcomponents fail, the
whole OR component fails,
5. Function call components

A function call component is written

<function name>

or
<function name> (<arguments>)

A component of this sort may or may not advance the input
scan, It may or may not prepare output on one of the
output streams, or in a tentative output table. Each
function used in a TMGL program must be declared; the
syntax of declarations is described in subsection E.

The available functions are listed in subsection F, but

a few examples will be listed here,

MARKS This component always succeeds, It queers the
input program so that until further notice, scanned
input characters are placed in the symbol buffer,

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BN.4.02 PAGE 5

NAME

GETNAM

INSTAL

This component fails only if the symbol buffer Is
empty, Otherwise, the MARKS mode is turned off _
and the symbol buffer is copied into the symbol_ table,
An internal name, of the form XXnnnn, is generated

for this symbol, and this internal name is appended
to the output table of the component whereof the NAME
component is a part. This symbol is made the current

symbol.

This component always succeeds, It causes the external
name (that is, the actual letters) of the current
symbol to be placed in the output table of the
component whereof this component is a part.

This component functions exactly like NAME, except that
the actual symbol (not the internal name) is placed

in the output table of the component whereof this
component is a part.

COMPUTE (VARIABLE = EXPRESSION)

This component always succeeds, It has the effect of
performing the assignment indicated, Each variable
appearing in the argument of COMPUTE must be declared;
syntax for declarations and expressions is described
in subsection E,

One important class of variables is that of system
cells, The available system cells are listed in
subsection G, but two important ones will be mentioned
here,

J is the character-scanner, One way of skipping
two characters is to match the component CCMPUTE
(J = J+2),

EQUADR is the symbol-table position of the current
symbol, To return attention to the symbol with
position n, match the component COMPUTE
(EQUADR = n),

6. Anomalous Components

There are exactly two anomalous components,

This component always fails,

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BN.4,02 PAGE 6

// This component fails unless the next character In the
input stream is a carriage return, After this
component has been successfully matchad, the scan has
been advanced beyond the carriage return,

Definition Components
A definition component is written

$(<string>$)
or

(Kinteger>) $ (<string>$)
A definition component always succeeds, The component
is literally added to the output table of the component
whereof this component is a part.
Sentence-name components
A sentence-name component is written

<namz of sentence>
A character-string is the name of a sentence if the string,
immediately followed by two psriods, appears at the left-
hand edge of some TMGL line, When a character string so
appears, it defines the start of a trail whose passage
involves the matching of various components,
The trail-following algorithm is discussed in subsection H,
Socner or later, the trail will come to an end, If and
only if (but see functions exit, pl, null) a definition
component has been reached yet, the sentence-name component
has succeeded, - '
As the trail is followed, the components matched may be
adding to the ocutput table of the sentence-name component,
When the trail comes to an end, this output table is trimmed
back to where it was just after the last definition
component was matched,

If the sentence-name component C succeeds, it has some
output table T, A pointer to T is placed in the output

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BN.L,02 PAGE 7

table T° of the component C’ whereof C is a part. To say
that C is a part of C%, we now understand, means simply
that C is encountered along the trail out of C~,

B. Grand Plan

Every TMGL-written compiler foliows the following scheme:

1. By means of a mechanism described in subsection E, a
super sentence name is found,

2. The trail from the super sentence name is followed, As
soon as any immediate subcomponent of the super sentence
name succeeds and produces an output table, that cutput

table is activated, (Warning: see subsection J, items
L and 8).

3, When the trail comes to an end, the compilation is complete,.

Thus, for example, consider the problem of programming

a ccmpiler to "translate" English text by reversing the
spelling of each word, This compiler would translate
"You never outgrow your need for Multics'" into "Ouy reven
worgtuo ruoy deen rof scitlum,”

A complete TMGL program to do this is displayed in subsection
I, In brief, the structure of this compiler is as follows:

1. "word" is a sentence-name component wnich swallows a
word from the input siream and wnhose cutput table, when
activated, spews out the reverse of the input word,

2. "Punctuation" is a sentence-namz component which swallows
any stream of spaces, carriage returns, and punctuation,
and whose output table, when activated, spews out the
string which has been swallowed.

3. The trail starting from the super sentence name loops

through "word"' and "punctuation" cocmponents until
it can”t find input of either kind; then it comes to an end,

C. Outhut Tables_and Definitions

Activation actually is a process which, tike any evaluation

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BN.4,02 PAGE 8

scheme, requires two parameters., These are an expression
(in this case, the output table) and a 1ist of bindings
for free variables. As it happens, most output tables

do not contain any free variables,

At the time an output table is activated, its most recent
entry must be a definition component which has placed

itself in the table, This fact is readily deducible from

the discussion of sentence-name components above, Activation
is primarily governed by the form of definition components.

A definition componerit of the form
=$(<string>$)

can never contain any free variables, Consequently, additional
arguments are errors when this compcnent is activated,

A definition component of the form
=(Kinteger>) $ (Kstring>$)

may contain up to n free variables, where n is the value
of the integer., If bindings are not supplied at activation
time, they are generated in the XXnnnn series,

Most of the business of activating a definition component
consists of goirg down the string from left to right,
activating the elements found there. There are nine different
sorts of elements:

1. If two consecutive slashes are found, or if a new-line
character is found, then a new-line character is added
to the object stream, :

2. If a single slash is found, or if three or more consecutive
blanks are found, a tab character is added to the object
stream, :

3. If $F1 (<identifier>) is found, then the value of the
identified variable is incremented by one,

L, IT $F2 (Kidentifier>) is found, then thes value of the
identified variable is decremented by one,

MULTICS SYSTEM-PROGRAMMERS ™ MANUAL SECTION BN.M.OZ PAGE ©

5, If $F3 (<identifier>) is found, then a decimal)]
representation of the value of the identified variable Is
added to the object stream,

6. If §0n is found, where n is some integer, then the nth
activation binding is activated. The 3$0n”s, in other
words, are the free variables menticned in page 10,

7. If $Pn is found, where n is some integer, then the nth
previous entry in this output table iIs activated,

8. If SPn,m is found, where n and m are Integers, then
the nth previcus entry (that is, the (n+155t topmest entry),
in this output table is examined, This entry should be a
pointer to another output table (as opposed, for example,
a literal string). The result of activating $Pn.m is the
activation of the mth topmost entry in the table T, when
T is the (n+1)st topmost in the current table,

S

tO

Either $Pn or $Pn.m may be followed by arguments, listed
between parentheses and separated by commas, If this

is done, the output-table entry referred to by the §Pn
or $Pn.m must be a rointer to an output table whose oD
entry is a definition cf the form (<integer>) % (stuft$).
The arguments are then the activation bindings of this
definition, The syntax for arguments is specified in
subsection E, :

9, If $ <character> is found, where the character is not
Q, P, F, or), the character is appended to the object
streamn,

10. If the activation process comes upon text which is not

of one of the styles (i) - (9), that text is literally
appended to the object stream,

D. Character Set.

The following ASCII characters are handled unambiguously by
TG &

greater than less than
blank new line

period coirma

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTICN BN,4,02 PAGE 10

colon semicolon
brackets parentheses
question mark circumflex
double quote underline
plus minus

star ' slash
dollar vertical
equals ampersand

decimal digits

The 52 ASCII letters are mapped into a 26-character set
of indeterminate case. _

Each ASCII HT character 1s mapped into a blank,

Each otheir ASCII character is mapped into a percent sign,

£, TMGL Syntax

0. A TMGL Program consists of a header division, a declaration
division, a definition division, and an end card.

<tmgl program>::=<header division>
<declaration division>
<sentence division>
<definition division>
<end card>
1. The header division generally ccnsists of two cards.

Neither of these contains any information actually used
by the TMGL ccmpiler, but both are necessary.

MULTICS SYSTEM-PROGRAMMERS* MANUAL SECTION BN.4.02 PAGE 11

<header division>::=SYNTAX<blanl>FOR<blank> <id> 2NL>
<.SYNTAX.> <NL>
<id>::=<letter>|<id <letter>|<id> <digit>|<id> <minus sign>
Optionally, the header division just described may be preceded by
$TMG<b]ank\N®S$URCE

This suppresses the source listing of the TMGL program; it is
sometimes useful,

Also optionally, arbitrary FAP cards may come between
the two required cards., These FAP cards will be copied
to the FAP file of driving tables being procuced from
this TMGL program,

2. The declaration division consists of declarations and
interspersed comments. Declarations are used to identify
the super sentence name, to assign names to system functions
and system cells which will be used, toc identify and
initialize variables, to name fixed strings, to name fixed
character classes, to declare that cortaln identifiers will
name flags which may be set on entries in the symbol table,
to set Togical tab stops in the object stream, and to
identify vectoxs “which will be used within the compiler,

<declaration division>::=<dc>[<declaration divisiom» <dc>
<dc> ::=<declaration> [<comment>
<comment>: :=*<string not including<NL>> <NL>
<declaration>::=<super sentence declaration>|

<system function declaration>]

<system cell declaration>|
<fixed string declaration>|
<character class declaration>|

<flag declaration>]

MULTICS SYSTEM=-PROGRAMMERS® MANUAL SECTION BN.4,02 PAGE 12

<tab deciaration>|
<vector declaration> |

2.1 The super sentence declaration determines ths overall
flow of the compilation, as described in subsection
p s
of B. Each ccmpiler needs exactly one super sentence
declaration,

<super sentence declaration>::=<sentence name>-=
PROGRM <NL>

<sentence nams> g i=<ic>

N
Ny

Each system function used in a compiler must be declared,
At the time of declaring the function, the user must
assign to it an arbitrary identifier for use in his
compiler, The cases of functions with and without

an explicit argument are distinguished,

<system function declaration>:;=<function name>=
<Fd> <NL>

<function name> s ;=<id>
<Fd s i=%<name of no-argument system functiond>|
*x<name of one-argument system function>
<name of system function>::=See subsection F.
2.3 System cells may ke given arbitrary names and then

useda as variables in a compiler, Each system cell
used as a variable must be declared,

<svstem cell declaration>::;=<variable name>=
<system cell name> <NL>
<variable name>;:=<id>

~

<system cell name>;:=See subsection G.

2.4 Variables cther than system cells must be declared
if they are to be used, At the time of declaration,

MULTICS SYSTEM~PROGRAMMERS® MANUAL SECTION BN.4,02 PAGE 13

2

.5

.06

an initial value must be assigned.

<variable declaration>::=<variable name>=<signed integer><iL>
<signed integer>::=<integer>|[-<integer>[+<integer>
<integei>::=<decimal integer>|<octal integer>

<decimal integer>::=<digit>|<decimal integer> <digit>

<octal integer>::=<octal digit>B|<octal digit><octal inteéer>
It may be convenient to allow an identifier to denote

a fixed character-string throughout a compiler,

The syntax of this declaration is ccmplicated by the
special role of dollar signs in TMGL.

Dollar signs are used as string delimiters in TMGL, so they
may not appear within strings as other characters may.
However, the TMGL syntax does not admit zero-length fixed
strings. A dollar sign may, therefore, appear as the first
character of a TMGL fixed string., In that position, 1t is
not taken to be the final delimiter,

<fixed string declaration>::=<string name>=$<TMG string> $<NL>
<fixed name>;:=<id>

<TMG string>::=$<tmgs> [<tmgs>

<tmgs>::=<string of any characters but_$ and <NL>>

A name may be given to any subset of the TMGL character
set which does not contain <NL>,

<character class declaration>::=<character class name>=
CHARCL ($<TMG string>$)

<character class named>.: :=<id>

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BN.4.02 PAGE 14

2.7

Certain system functions described in subsectlon

F allow named flags to be individually set and cleared
on individual entries in the symbol table. Each

flag to be used must be declared,

<flag declaration>::=,FLAGS.<blank><flaglist> <NL>
<flaglist>::=<flagname> |[<flaglist> <fbreak> <flagname>
<flagname>: :=<id>

<fbreak> : ;=<comma> [<blank> |<fbreak> <blank>

The setting of logical tab stops is ignored by the
TMGL compiler, but a tab stop declaration must appear
in the compi]er

<tab declaration>::=,TABS.<blank> <tab 1ist> <NL>

<tab list>::=<tab stop>|<tab 1list> <fbreak> <tab stop>
<tab stop>::= <decimal integer>

Vectors may be useful within the compiler; each must
be decTared with a subscript bound

<vector declaration>::=.LIST.<blank> <vector Tist> <NL>
<vector 1ist>::=<vdesc>|<vector list> <fbreak> <vdesc>
<vdesc>::= <vector name> (<integer>)

<vector named>: :=<id>

The sentence division consists of sentences and interspersed
comments, Each sentence begins with its unique sentence

name and ends with the first subject after 1t Sentence

B may begin within sentence A, 1in which case A and
B will end with the same subJect.

It is tempting to say that each sentence is a complete
description of the syntax of the structure associated
with the sentence-~name. Actually, things are less
simple, but. the reader is referred to subsection

H for a more careful discussion,

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BN.4,02 PAGE 15

<sentence division>::=<sc>|<sentence diQision> <sc>
<se> s i=<sentence> |<comment> |<pseudo sentence>
<pseudo sentence>;:=see subsection F, under 'valbra"
<sentence»; ;=<sentence beginning> <subject> <NL>|
<sentence beginning> <sentencé middle>
<NL> <sentencex
<sentence beginning>::=<sentence label>
<sentence label>::=<sentence nam=>..
<sentence middle>::=<element 1ist>|
<break> <sentence middle>|

<sentence middle> <break>

<break> ;:=<blank> [<break> <break> |<NL> <break>
<element list>::=<element>|<element> <break> <element list>
<subject>::==<deFinition>!=<definition>/<continuatioﬁ>
<element> ;;=<non-definition component> |
<non-definition component>/<detour>
<non-definition component>::=<literal string component> |
<character class component> |

<starred character class
component> |

<0OR component> |
<function call component>]
<anomalous compcnent> |

<sentence name component>

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BN.W,02 PAGE

<literal stking component>: :=$<TMG string>$|<string name>

<character class componentd>::=<character class name>

<starred character class component>::=<character class name>¥

<OR component>;:=<non-definition component> <blanks>

.OR.<break> <non-definition component>

<blanksy>::=<blank>|[<blank> <blanks>

<function call component>::=<fc with>|<fc without>
<fc without>::=<function name>

<fc with>::=<function name> (<argument>)

<argument>::= format varies from function to function,
See subsection F,

'

<anomalous component> g i=*¥%]//
<sentence name component> ::=<sentence name>
<continuation>::=<sentence name>

<detoury»::=<relative detour>|[<sentence name>|(<sentence
fragment>)

<sentence fragment>::=<sentence middle>|<subject> |
(<sentence middle> <subject>

<relative detour>::=*<addop> <integer>

<addop> : := +|<blanks>-

<definition;:=<definition name> |
(<integer>)$(<definition text>$)|

$(<definition text>$)

MULTICS SYSTEM~-PROGRAMMERS ™ MANUAL SECTICN BN.L4,02 PAGE 17

—

<definition text::=<definition element>

<definition elementy> <definiticn text>

<definition element::=<NL definition>|<tab definition>|
<F definitiony|<P definition>|
<Q definiticn>|<quoted character def>|

" <free definitionm>

<NL definition>::=<NL>]//

<tab definition>::=<three or more consecutive blanks>|/
<F definitionm>::=4F <integer> (Kvariable name>)

<P definition>::=<P def>|<P def> (<P arglist>)

<P def>::=$P <integer>|}P <integer>.<integer>

<P arglist>::=<definition name>

<definition name>, <P arglist>

<Q definition>::=$0 <integer>
<quoted character def>::=%$<character not @, P, F, or)>
<free definition>::=<text not containing other definition

elemants>

Definition names are associated with their definitions
in the definitions division,

<definitions division>::=.DEFINITIONS.<NL> |
<definifions division> <defc>

<defc» s i=<definition 1ine> |<comment>

MULTICS SYSTEM-PROGRAMMERS ™ MANUAL SECTION BN.4,02 PAGE

<definition line>

Il

e

.
.

<dzfinition name>=<definition> <NL>

p=<1

\Q/

<definition name>

..

"5, An end card must terminate each TMGL program,
<end card> : :=END<NL>

F. System Functions in TMGL

Method of description

When used as components, most functions always succeed,
Functions which socmetimes (or always) fail are labeled
"F" below,

vWhen some functions succeed, they add to the output tables
of the components whereof they are parts, Other functions
never make any table entries., Functions which do make
such entries are labeled "T" below.

Some functions never advanca J, the input scan pointer,
Functions which sometimes (or always) advance J are labeled
"J" below,
1. Mode-setting functions

blanks Causes blanks te be significant in input,

nob 1ks Causes blanks to be ignored in input., This
is the default case, ‘

cardof Causes new-line characters in input to be
treated as blanks,

cardon Causes new-line characters in input to be
significant, This is the default case.

yescom Causes strings of the form of PL/I comments

(/*string*/) to be ignored whenever noblks
mode is in effect,

MULTICS SYSTEM-PRCGRAMMERS® MANUAL SECTION BN,4,02 PAGE 19

nocom

Forcés the programmer to handie PL/I comments
above the adapter level, This is the default
case, '

lists

nolsts

Causes each compilation to produce a source
listing in the BCD stream. Also causes collection
of cross-references, This is the default case,

Suppresses production of source listing and
collection of cross-references,

retoff

refon

Suppresses collection of cross references,

Causes collection of cross-references,

Text-scanning functions

char(<character class name>) JF

Same as unadorned <character class name>

string (<character class name>) J

delete J

eolmrk JF

glot JT

mark

reset J

Same as <character class name>*

Same as '"blank*", whzre "blank! is the character
class whose sole member is the blank character,

Same as "/ /",

Runs wild if used in cardof mode, Otherwise,
enters in output table the string which starts

at J and is terminated by (does not include) the
next new-line character,

Saves current scan position (J) in a secret place,

Returns scan to position it had at last use
of mark.

MULTICS SYSTEM~PROGR AMMERS = MANUAL SECTION BN.L4,02 PAGE 20

3. Symbol table routines

marks If in"noblks mode, executes delete, Then, causes
blanks/noblks mode to be set to blanks. Until
further notice, all scanned characters go into
a symbol buffer, which is initially cleared,

instal TF Fails if symbol buffer is empty. Otherwise, the
symbol buffer is combined with system cell contxt
to determine a location (equadr) in symbo1 table.
System cell intval is set to contain the value of
the decimal integer, if any, at the head of the
symbol buffer, This symbol-table entry, if it
was not set before, is set to show the contents of
the symbol buffer as the external name of the
symbol, This external name is entered into the
output table. An internal name, of the form
XXnnnn, 1is associated with the symbol-table slot,

name TF Same as instal, but the created name, not the
external name, is placed in the output table,

find F Similar to instal, but no output-table or symbol-
table entry is made, A typ1Ca1 use for find is in
compilers for block-structured languages. Several
concentric contexts may give rise to a number of
possible symbol-table slots for a variable of
given external name, Before deciding that an
appearance of the variable is new, the compiler
must try to find the variable with contxt set to
each surrounding value,

enter (<literal string component>) T
Same as name, but the string is used instead of
the contents of the symbol buffer,

alloc T Similar to '"name", but a null string is used
instead of the contents of the symbol buffer,
Useful for temporary storage; each use produces a
new slot,

getnam T Puts external name of current symbol (identified
by equddr) in output table,

namest T Same as getnam.

MULTICS SYSTEM~PROGRAMMERS” MANUAL SECTION BN.L.02 PAGE 21
getcrn T Puts internal name of current symbol in
output table,

getval Sets intval to correspond to current sympol
(see instal).

—

noflgs F Fails if any flag is set on the current symbol,

chkflg(<flagname>) F
Fails if the named flag is not set on the
current symbol,

setflg(<flagnam=>
Sets the named flag on the current symbol,

clrflg(<flagname>)
' Clears the named flag from the current symbol,

dict Causes printing of cross-reference table in
the BCD stream,

subsav Stores external name of current symbol in a
secret place,

subst Replaces internal name of current svmbol by the
name last saved by subsav., These two routines
are used, for example, In the THMGL compiler
itself, The declaration

namel = *name?2
causes name2 to become the internal name of namefl,

among other things, This is accompliishad by
subsav/subst,

L, Parse contrel functiors

alex Does nothing

MULTICS SYSTEM-PROGRAMMERS ® MANUAL SECTICN BN.,4,02 PAGE 22

nogo F

null

Somewhat similar in effect to =$($). That is,
this component ends the trail which led to it,
However, this component is different from =$($)
in that it makes no entries in any output table,
Even its predecessors” outout (since the last
subject along the trail) is discarded.

Same as '"'#¥!, but nogo stops even deader,
ignoring any Fo11ow1ng detour,

Acts Tike "=3$(3)", even to the point of treating
its detour like a continuation, See subsection
J, item #3.

parsdo(<parsdo argument>) J

Causes the trail starting at the argument to

be followed, Etach time a ccmponent along this
trail produces an output-table entry, thet entry
is activated, The trail must end by failing,
Running off the right end of the argument leads
to disorder, The parsdo function iIs used by the
TMG interpreter to process the super sentence,
Rather than store up an enormous output struc ure,
a senterce may utilize parsdo to get rid of output
as soon as it is determined, See subsection J,
items 4 and 8,

<parsdo argument>::=<sentence name>

<element> <break> <element 1ist>

not(<sentence middie>») F

Succeeds only if its argument, if it were here

in place of this component, would fail, pNot

may sneak J ahead to test its argument against
the input, but the input will later be backed up,
For example, matching a string constant with "3
marks letter’ Instal $$3$" may, if the second "§"
is not found, cause a spurious entry in the sym
table, Better is

&
@)

$$$ marks letter® not (not($$3)) instal

arbno(<sentence middler) J7

Same as component x

X..=$($) /%1
'x1.0<sentence middlex=$($p2%p1%)

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BN.,4,02 PAGE 23

valbra(Kvarg>) F
Serves as a subscrlpLed transfer., Valbra
(<vs name>) is the same as
valbra (<Kvs interior>)

where this is the interior associated with the
name in a <v pseudoc>.

Valbra (n nl/el stuff) is the same as
if (n .ne. n1)/el valbra (n stuff)

except that subsection J, item 1 does not apply.

valbra (n *%) fails,
<pseudo sentence>::=<v pseudo> |<e pseudo>|<1 pseudo>
<varg> ::=<vs name>|<vs interior>
<e pseudc>::=see below, under "encode"
<1 pseudo>::=see below, under "local"
<v pseudc>::=<vs name>,.<vs interior> <NL>
<vs name>::=<ic>
<vs interior>:;=<primary> <break> k|

<primary> <break> <ve list> <break>¥¥

<ve list>::=<primary>/<detour>|

<primary>/<detour> <break> <ve list>

savtre Copies last output-table entry into system-cell
tree, See subsection J, item 3,

getree T Enters contents of tree into output table. These
functions are of scme value in handling assignment
statemants, Code for the left-hand side is easy to
prepare when that side is first seen.,. But there is

MULTICS SYSTEM=-PROGRAMMERS” MANUAL SECTION BN,4,02 PAGE 24

no sense in emitting that code until the right-hand side
is translated, The left-hand code may be saved and then

emitted with savtre/getree.

if (<bexpr>) F Fails if and only if the boolean expression is

false.
See subsection J, item 5.
<bexpr>::=<bprimary>|<bprimary> AND. <bterm>
<bprimary>::=<relatior>| (<bexpr>)].NOT, <bprimary>
<relation>::=<aexpr>.<relop>.<aexpr>
<relop>::= NEJE[LILEIGIGEIEQLTIGT

<aexpr>::=See below, under compute,

Miscellaneous Functions
encode (Kearg>) JF
Sets a multiple-position switch to show which (if
any) of a set of enumerated fixed strings occurs
in the input stream,
encode (<es name>) is the same as encode
(Kes interior>) where this interior is associated
with this name in an <e pseudo>,
encode (n s/ni1 stuff) is the same as x,
where
X.. s/x1 compute (n=n1) exit
X1,.encode (n stuff)
encode (n **) fails
<eard>::=<es name> [<es interior>
<e psuedo>::=<es name>, .<es interior> <NL>

<es name> ;:=<id>

<es interior>::=<primarv> <breal> *¥|

MULTICS SYSTEM~-PROGRAMMERS ® MANUAL SECTION BN.4,02 PAGE 25

<primary> <break> <ee 1ist> <bréak>**'
}<ee 1isty>::=3<TMG string>$/<primary> |
$<TMG string>$/<primary> <break> <ee list>
type (<literal string component>)

Causes the last input line and the given string
to be appended to the console stream,

cvtd (Kvariabie name>) T
Adds to the output table the decimal
representation of the value of the given primary.
The variable may not be a system cell,

cvto (Kvariable name>) T
Adds to the output table the octal representation
of the value of the given primary. The variable
may not be a system cell,

compute (<assignment list>) J
-Makes assignments to variables and to descriptor-
Tist positions, See subsection J, item 5. The
striking thing about the "compute'" function is
that the effects of "compute" are never withdrawn,
This fact deserves careful discussion,

Suppose the sentence-component S is being matched,
and suppose that the traii from S runs through
non-detfinition components A, B, and C., If A and B
both succeed and C fails, S should fail and the
side-effects of matching A and B should be
rescinded, For example, matching A might have
caused an advance of the scan pointer, J] Before
continuing at S”s detour, the system must restore
the value of J which was in effect when S was
entered, Other, nameless, system variables may
also be restored,

The effects of matching compute components are not
generally rescinded,

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTICN BN.4,02 PAGE 26

Variables mentioned in "compute' arguments may be
of any of five types., Ordinary declared variables
ard system cells are the simplest of these,

Vector elements may be set by simply naming the
vector within parentheses, The subscript is
implicit, and initially one, To change or to use
the value of the subscript of a vector, manipulate
the vector name,

Connected to each entry in the symbol table is a

description list of indefinite length, To refer

to the nth entry in the descriptor 1ist of the
~current symbol, use the notation "DESC(n)".

<assignment 1ist>::=<assignment>]
<assignment>, <assignment 1ist>

<assignment>::=<lhs>=<aexpr>

<I1hs»>::=<variabie name> |<vector name> | (Kvector name>) |
DESC (<aexpr>)

<aexpry»::=<addop> <term> |<term> <addop> <aexpr> |[<term>

<term>::=<primary>|<primary> <mop> <term>

<primary>::=<integer>|<1hs> | (Kaexpr>)
Note that DESC, if it is used, must be declared as
1f it were a built-in, argument-taking function cf
the same name, For example, sez the word-counting
program in subsection I,

local (Klarg>)

Hides the values of named variables (other than
system cells), If the trall now passing through
local comes to an end before coming to a subject,
most components will, as mentioned above with
compute, have their effects rescinded,

The effect of rescinding lccal is to restore the

hidden values to the variables.

D)

MULTICS SYSTEM- PRO”RA#NEQS MANUAL SECTION BN.4,02 PAGE 27

local (<1s name\) is the same as local (<1s interior>)
where this interior is associated with this name in an
<1 pseudc>

=<1s nam=>|<1s interior>

<larg>
<1 pseudo>::=<ls name>,.<ls interior> <NL>
<1s interior>::=<variable name> <blanks> |

<variable name> <blanks> <1s interior>

G, System Cells in TMG

tree Used by getree/savire (subsection F)

contxt Combined with external name to find a symbol-table
slot, See instal, name, find, and enter in
subsection F,

J Scan pointer, counts one per character, goes up to
next multiple of 80 at new-1line character,

equadr Specifies which slot of symbol table is that of
current symbol, Can be set by the following
functions:

compute find enter
instal name alloc
intval IT equadr set by anything besides compute, f

30
[l
®
() e
(O]
=

oeLva1 matched, contains value of decimal i
17 any) at beglnnlng of current symbol,

H. Trail-following in TMG

When a sentence~name component is matched, a trail is
followed through various parts of the ccmp;]er The course
of this trail determines whether or not the sentence-name
component will succeed, and, if it will succeed, what
output table will be prepurac for it.

MULTICS SYSTEM~PROGRAMMERS” MANUAL SECTION BN.4,02 PAGE 28

This subsection describes TMG”s trail-following algorithm,

When sentence-name component A is to be matched, TMG locks
for a sentence beginning "A..". Exactly one such sentence
should be found., The trail from "A,, " g@nefa]ly proceods
from left to right, ignoring card boundaries and ignoring
sentence labels (e.g., "B..") of embedded sentences.

As subsection E ma&os'plain there are then two sorts
of ochrLs which may be encountered in this lef t-to-right
motion: elements and subjects.

Subsection E also notes that there are two sorts of elements,
those with detours and those without,

An element without a detour is just a non-definition component,
This component is matched, If the match succeeds, the
blanks/noblks mode is restored to what it was before the

match, and the trail continues to the right. If the match
fails, the trail comes to an end (almost - see Item 1

in subsection 1),

Each element £ of the other sort consists of a non-definition
component and a detour, The ccmponent is matched, and

if the match is successful, the trail continues to the

right.

If the component fails, the detour is examined, There are three
distinguishable cases,

The case of a relative detour is simple in concept. The
detour "#+1", for exampie, genera]]y allows the trail
to continue at the next element right-ward, Thus, an

optional comma could be matched by the element ”$ $/ 1

Before using relative detours, check with Item 2 of subsection
Ia

When the detour is a sentence name S, the trail continues
from the sentence label S,

When the detour consists of some parenthesized sentence

fragment, the trail moves through this fragment (and probably
beyono 1L> as if it had stood in the place of the original
element E.

When the trail reaches a subject, the definition is matched, If
there is no continuation portion, the trail comés to an end, If
a continuation "C" is present, the trail continues from "C.,.",

MULTICS SYSTEM=~PROGRAMMERS © MANUAL SECTION BN.4.02 PAGE 29

I. Sample TMGL Programs

This subsection consists entirely of three highly-annotated
TMGL programs. These programs are directed to (and written
by) one who starts from ignorance of both TMGL and compiler
structure., Consequently, the examgles have nothing to

do with compilers; TMGL is hairy enough by itself.

The three examples should be studied in the order in which
they appear.

syntax for wordtlipper

.Syntax.

*

* identity super sentence name
B3

tlipper=progrn

%

* declare functions used

*

refoft=%refott
blanks=*blanks
marks=*marks
install=%*instal
type=**type

*

* name useful character classes

*

latter=charcl (sabcdefghijklnnopgrstuvwxyz*3)
puncts=charcl (3 .," () :;7?2[19)

garbage=charcl ($3%<>7_+-/|=601234567893)

E

® nandatory ".tabs." declaration

%*

~tabhs. 1

® here is the super sentence. 1t looks for "x*%" to

* stop on. If it decesnt get "rxkn, it peels a word or string of
* punctuation marks off the input. Since this is the super
¥ sentence, not just an ordinary one, the output table

* prepared by each word or punctuation match is immediately
* activated.

%

flipper.. refotf
flipper3.. B*%*j3/flipperl lastline *x
e

* It the "*%x%% had been found, we would have noved on to

* wix" and to a halt. But getting to flipperl means no "HE%W yet,
N :

flipperl.. word/flipper?2

*

* whether or not we have peeled off a word, we drop from flipperi
¥ to flipper?2,

MULTICS SYSTEM~PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 30

flipper2.. punctuation/flipper#4 *%*/flipper3

*

* and if we find any punctuation, back we go to look for "xxU,

*

% we use flipperd4 to plow through illegal characters.

*

flippert4.. garbage* type {$illegal character in above line$) **/flipper3

¥ To handle a word, we split off the first letter and
* put this out after the flipped version of the "word" which is left.
* If there is nothing left, the flipped version of the original
word 1s just the first (only) letter.
ord.. blanks marks letter install word/(=pl) =3(3pl1sp25)
Notice that in the detour to the "word!" coumponent, we use
the abbreviation "p1" which we must define below. The punctuation
coplier picks up either a string of graphics or a newline character
2ach time 1t succeeds. Notice that install will fail if "puncts*®

LU IR L A L

picks up nothing.

*

panctuation.. blanks marks puncts#* install/punct2=p1l
punct2.. //

lastline.. =3 (//%)

%

* here is that defirition we needed.
*

.definitions.

P1=3($p13%)

end

MULTICS SYSTEM~PROGRAMMERS © MANUAL SECTION BN,4.02 PAGE 31

Syntax for English-to-Pig-Llatin

.Syntax.

*

¥ Pig Latin is probably the nearest approximation to cant

* (e.g., Cockney rhyming slang) that the United States has ever

* produced. Several dialects exist, and this compiler may be

* described as follows:

x .

x 1. Single-letter words are unchanged, as is punctuation.

*

* 2. Each word beginning with a vowel has "YAY'" appended.- Words

* bpeginning with "y" imma2diately followed by a consonant ("yclept," for
* exaample) are considered to fall into this category.

*

* 3. Pach word beginning with a consonant striug is altered by

¥ rvotating that consonant string to the end and then appending "AY".

* It a "g" is wmoved, as in "quid" or "“squid," its "u" moves with it.

¥ The letter "y" is not part of the initial consonant string in "scythe,"
¥ although it is in "yaws."

x .

® For the purists, we here acknowledge that Pig Latin 1s really an
* aurally constructed language. Our rules would be rejected by any

¥ nina-year—-old, who would know that the Pig Latin for "once"

¥ 1s '"unsway," not "onceyay"; "hour" should become "ouryay," and so on.
%

¥ There is another peculiarity to written Pig Latin, or rather to

* the written-fnglish-to-written-Pig-Latin translator. The transformation
¥ 1s eoxpansive, possibly by a factor of two. Accordingly, this compiler
¥ maintains an output column counter, and a new-line character 1is

* enmitted whenever this output column counter gets largye. New-line

¥ characters in the input file are ignored unless they precede paragravh
¥ indentation.

*

* These declarations should not be mysterious

*

plgger=progrn

dalete=*delete

refotfi=*refoftt

blanks=%hblanks

marks=*marks

type=s*type

install=%*instal

vowecl=charcl (baelious)

consonant=charcl (ibcdfghjklmnpgrstvuxyz*3)
letter=charcl (sabcdefghijklmnopgrstuvuxyz-35)
consonant-not-gJy=charcl ($bcdfghjklunprstvuxziy)
puncts=charcl (s .," () :;7?[}9)

Jarbage=charcl (334%<>7_+,/]1=50123456789%)
.tabs. 1

X<

MULTICS SVSTEM -PROGRAMMERS © MANUAL SECTION BN.4.02 PAGE 32

* A paragraph beglns with five spaces

*x

paragraph=3 3

%

¥ declare variables for column-counting
*

startword=0
column-count=0

%

* we need access to the system scan pointer, J

*

3=% 3

* .

¥ If column-count gets here, we generate a new-line
%

right-margin=60

* .

® here is that super-sentence

x

pigyer.. refoft

plgyer-1.. $x¥*x5/pigger-2 lastline *x
prgger-2.. test-width word/pigger-3
pigger-3.. punctuation/vigger-5 **/pigger-1
pilgger-5.. pigger-4 **/pigger-1

pigger-i4.. garbage* type(fmness aboved) =5()
%
¥ "test-width" 1s a modest little routine which always succeeds

% and which emits new-line characters as neceded.

#

test-vwidth.. if {column-count .ge. right-margin) /(=% (3))
blanks delete conmpute(column-count=0)

lastline.. =35(//%)

”

¥ The "word" routine is not trivial. First, it sorts out the
¥ e2asy case of one-letter vords.

#*

word.. blanks one-letter-word .OR. big-word =p1
one-letter-word.. marks letter install

not {letter)

=3 ($f1 (coluan-count) $p1§)
¥
* Now comas the monster. It will be put down first, then explained
%
big-word.. compute(startword=j) rarks

vowel/big-word-1 *%/big-word-4

big-word-1,. 3y$/big-wvord-2 ®%/hig-word-3
bijy-wordi-2.. consonant-not-gy* JFgu$/*+1 install

rarks letter¥* install

cospute (column-count= column~count+j -Stdtudord+2)

porker = 5 ($p1{p3,p2) I
bij-word-3.. consonant/ (marks coupute{colunn-count=column-count -1)})
big-word-4.. letter* 1install

compute {coluan-count=column-count+j -startword+3)
porker = 5 (ipl1(y,p2) %)

porker.. = porcity '
*x

Ho9e st 4F I 9 9 3 g6 JF g 4 gt 0 ¢

*

*

6 4E 36 6 B 4t 9

pun

*
%
*

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.4.02 PAGE 33

Here we go. You should know that "porcify" is a definition which
takes a split word (say, "sgquid," split into "squ" and "id") and
produces Pig Latin. So the point of "bigword" is mainly just to split
words into pieces for Yporcify."

We start by noting the input scan pointer, J. We will use J
to compute the guantity of output which we have produced; in the
case of words starting with consonants, for exanple, the output
produced 15 as long as the input (ending jminus starting j)
plus two for the added "ay."

Now we use "mark"™ and we start collecting letters.

Suppose the first letter is a vowel. 1In this case, the detour of
the "vowel" component is irrelevant, and we proceed to "big-word-4."
The "letter*" component collects the rest of thes word and
the "compute® ups the column-count to show the word and the
coming "yay". HNow we go to "porcify with an imaginary word,
split into a leading "y" and a trailing string which is the
word we really found.
Suppose the first letter of the word is not a vowel ("big-word-1"),

but rather it is "y". Then we skip the detour of the "y" cocaponent, and

we continue with big-word-3. If a consonant follows the "y'", then we
drop immediately to the next line, which 1s exactly whare we were a
minute ago when the word began with a vowel. If a non-consonant follows
the "y," however, we slyly reinitialize the letter-collector with a new
"marks' component. Only then do we drift down to the next lines, where
the code which thinks it is converting "an" into *"anyay"” is actually
converting "yam."

Finally, suwuppose the word begins with some lettar not one of
[a,e,1,0,u,y]. ¥We collect its initial string, collect the remainder,
and porcitfy the word split into this pair. '

The punctuaition-handler is rather an anticlinax.

ctuation.. blanks compute (startword=j)
marks puncts* install/(

// paragraph/ {(=5{ 3$)) comnpute(column-count=5) =3 (///3%))
compute (columan-count=column-count+j -startword)=p1

Finally, the definitions

.definitions,

por
pl=
p2=
p3=
y=3
ay=
end

citfy=(2) 5 (5312%37ay3)
5 (Bp13)

P(Fp23)

B ($p33F)

(y3)

f(ays)

MULTICS SYSTEM~-PROGRAMMERS © MANUAL SECTION BN.4.02 PAGE 34

syntax for word-counter

.Syntax. '

* This compiler accepts an English text. From this, it

* produces a table showing which words occurred in the text, and
* how frequently each occurred.

*

* here are the same old declarations

* .

marks=%¥marks

letter=charcl (5abcdefghijklmnopqrstuvwxyz-§)
jarbage=charcl ($3%.," ()<>:;2[]7_+/1=601234506789%)
.tabs. 1

cardof=*cardot

retoft=*refotf

count=progygrn

install=*instal

new-word=*noflygs

settlag=**setfly

ejquadr=%equadr

desc=**desc

parsdo=**parsdo

checkflag=**chkflg

getnan=*getnan

*

* Ve will be doing a fair amount of computing in this compiler.
¥ M"Total-words" will grow by one for every word in the input text;

¥ "distinct-words" will only grow when new words are found. Each

* distinct word will be labeled with a pointer to the previous such
* word ("chain") and an occurrence-count ("occurrences").

*

total-words=0
distinct-words=0
chain=1

occurrences=2

-3

* scratch cells
F3

n=0

previous-word=0

*

* The "chain" pointers will be used when we run back through all the
* words, printing thz2m and their occurrence-counts. A flag ("first-word")
* will be set on the first word in, so that we will Xnow where to stop

¥ OQur run. Also, each word will be given an "exists' flag so that the

¥ ficst appearance of the word wmay be easily distinquished.

*

.flags. first-word,exists

*

* Now we just pull in words until one of them is "=x¥", Jhen that

* happens, we print a summary.

MULTICS SYSTEM-PRCGRAMMERS © MANUAL SECTION BN.L4.02 PAGE 35

&

count.. cardof refoftf

count-1.. 3¥*¥*¥5/count-2 header output *x*
count-2.. count-3 word/count-1 count-3 *%*/count-1

count-3.. garbage* = 3 (3)
*
% when a new word comes in, we (1) set a pointer to the previous worig,

* and (2) start an occurrence count. 0ld words we just count.
*
word.. marks letter* install
(total-words=total-vwords+1)
new—word/((desc(occurrences)=desc(occur:en¢es)+1) =3 {3))
setflag{exists)
if {total-words .g. 1)/ (setflag(first-word))
{distinct-words=distinct-words+1) :
(desc (chain) =previous-word, previous-word=equadr)
(desc (occurrences) =1)
=5 (3)

So much for the words. When they are all read in, we start producing
our sumrmary:

ELIE O

he2ader.. =% ($5f3 (total-words) vwords altogether, 3)/h1
h1.. =% (sp15tf3 (distinct-words) distinct wordss.//3)
X

* - "Output" does not accumulate a giant, multi-line output structure.
¥ Instead, "output" produces i1ts lines as part of the matching process.
Ae
output.. ({equadr=previous-word) if(total-vords .e. 0)/ontl =3 (3)
outl.. parsdo(output-line *%}

checkflag (first-word) /((equadr=desc (chain)) #*¥/out1)
output-line.. getnam (n=desc (occurrences)) =% ($p1/3£3(n)//35)
%
.definitions.
end

(%)

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BN.4.02 PAGE 36

J. TMGL Dirties
1. Detour-less elements

Suppose a detour-less element fails, while matching a
sentence component C. One might expect this event to
entail the immediate failure of C, with the scan backed
up to where it was when C was encountered This will
happen in some cases.

In fact, the scan is backed up along the trail back to
C only Until C or some element having a_detour is reached.
In the latter case, the trail continues out that detour.

For example, the sentence

C.. ALEX/(=9(9)) 4

will always succeed, even though it should, according to
subsection H, a]ways fail. To get around this sort of thing,
try :

C.. ALEX/(:S] (s)) /(%)

This anomaly is not observed along trails being followed by
"PARSDQ"

2. Relative detours

The effect of relative detours is hlgh]y implementation-
dependent. As the detour for any component except a <fc
with>, "*41" i{s reliably "continue to the the right".

To get this effect with a <fc with> component, use Mgl
Don”t use other relative detours.

3. .P1, Savtre

These functions are supposed to treat the most recent
output-table entry. They will do this successfully only
if _that entry was _made by the last component matched along
lhe trail. Interven1ng components, even though they made
no entries-in any output table, will queer it.

L, Parsdo, blanks, noblks

The blanks and noblks functions have no effect when encountered
along a parsdo-argument trail, .

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BN.4.02 PAGE 37

5. Compute, if

The word "compute" may be omitted from components using

the compute function. Also, compute and if must never
be declared,

6. Line length

An input line to TMGL should not be longer than 80 characters.
If it is, the Diagnostic "preceding card unrecognizable"

may occur with reference to a blank line which does not,

of course, exist,

7. Functions and character classes undeclared

If a TMGL program makes use of a function without decliaring
it, the "card not blank after component 1list'" Diagnostic
may appear.

8. Parsdo

Along trails followed by parsda (for example, within the
super sentence), no function which requires an argument
will be properly interpreted. Starred character-class
components will also be mistreated,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.Lt.02 PAGE 38

K. REFERFNCES

1. McClure, R, M, "TMG - A Syntax Directed Compiler," in

Proceedings of the 20th National Conference. New York:

Association for Computing Machinery, 1965, Pp. 262 - 274,

2. Fasciano, V. A. "TMG - A Syntax Directed Compiler."

BTL Paper Pd - 550029,

