
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 1

Published: · 04/17 /67

Identification

TMGL
Robert R. Fenichel and M. D. Mcilroy

Purpose

This section describes the syntax and semantics of TMGL.
TMGL is of interest in Multics because the EPL compiler
is written in TMGL.

Structure of this Section

The remainder of this section consists of eleven
subdivisions as follows:

Page

A. Components 2

B. Grand Plan 7

C. Output Tables and Definitions 7

D. Character Set g

E. Syntax 10

F • System Functions 18

G. System Cells 27

H. Tr a i 1 - F o l 101i,d. n g 27

I • Sample Programs 29

J. Dirties 36

K. References 38

Those of these pieces \.Jh ic:h are not rnot i vated by others
are made intel1i_g.i_ble by others. ~Jo single order of reading
can be recommenaea.

MULTICS SYSTEM-PROGRAMMERS; MANUAL SECTION BN.4.02 PAGE 2

For tutorial purposes, the most useful portions of this
description are thought to be subsections A, B, C, H,
and I. There is no particular order in which these sections
should be read, however. Instead, the reader is advised
to utilize a chimneying technique, climbing not one wall
or another, but rather all at once. Section BN.4.02 A
is an index to this section.

A. Components

A TMGL program consists largely of sequences of components.
Components are frequently the names of syntactic" types
for which representatives are being sought in the input
stream. Other components alter internal tables, and still
others test the contents of these tables. Finally, an
important class of components is concerned with the output
generation process. In brief, when a component C is matched,

1. It may or may not advance !he scanning of the input stream.

2. It may or may not have side effects on the values of
compiler parameters or contents of compiler tables.

3. It may or may not add one line to the output table being
produced for the larger component C; of which C is a part.
In particular, this new line will be either

a.

b.

A pointer to the output table which was produced
as the substructure of C was matched, or
A definition of the output to be produced for C'.
This definition may include literal information as
well as pointers to previous entries in the output
table of C;.

4. It may succeed or fail. For example, C may test the
input stream for thepresence of a certain literal string.
If this strJng is not present, this component will fail.
A component which fails does not add anything to any ·
output table, nor does it advance the scanning of the
input stream.

A component may be matched because it is a subcomponent
of another component, or -- via a mechanism which will
be described later -- it may be matched at the top level.
For example, the entire compilation process might consist

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 3

of matching the component "program". After a component
has been successfully matched at the top level, the output
table that it has produced is activated. To activate
an output table is to generatec3u"tput according to the
specifications of the definition at the end of this table.

The output just mentioned is appended, as soon as it is
produced, to the object stream. The other output streams
of TMG are the co~sole stream, usually used for infrequent
diagnostic messages, and the BCD stream, usually used
for a printable listing.

Types of Components

This subsection includes a number of quasi - BNF forms.
Do not trust them too much. The real syntax of TMGL is
given'"in subsectionE.-

1. Literal string components

or

A literal string component is written

$<string of length n>$

<name of string of length n>

The mechanism for naming character classes is described
in subsection E. This component will fail unless the
next n characters of the input stream are those of the
displayed or named string. After this component has been
successfully matched, the input scan is advanced by n
characters.

2. Character class components

A character class component is written

<name of character class>

The mechanism for naming character classes is described
in subsection E. The character-class component will fail
if the next character of the input stream is not a member
of the named class. After this component has been successfully
matched, the input scan is advanced ·by one character.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 4

3. Starred character class components

A starred character class component is written

<name of character class>~·-

This component will always succeed. It has the effect
of spacing forward in the input (say, n characters) until
the character 11 under the read head11 is not a member of
the named class.

The n=O case is perfectly legitimate.

4. OR Components

An OR component is written

<component> . OR. <component>

If the first subcomponent of an OR component succeeds,
the second is ignored. If the first fails, the second
is matched 0 If and only if both subcomponents fail, the
whole OR component fails.

5. Function call components

or

A function call component is written

<function name>

<function name> (<arguments>)

A component of this sort may or may not advance the input
scan. It may or may not prepare output on one of the
output streams, or in a tentative output table. Each
function used in a TMGL program must be declared; the
syntax of declarations is described in subsection E.
The available functions are listed in subsection F, but
a few examples will be listed here.

MARKS This component always succeeds. It queers the
input program so that until further notice, scanned
input characters are placed in the symbol buffer.

MULTICS SY STEM-PROGRAMMERS" MANUAL SECTION BN.4.02 PAGE 5

NAME This component fails only if the symbol buffer is
empty. Othendse, the M2\RKS mode is turned off .
and the symbol buffer is copied into the symbol tabl~.
An internal name, of the form XXnnnn, is generated
for this symbol, and this internal name is appended
to the output table of the component whereof the NAME
component is a part. This symbol is made the current
symbo 1 •

GETNAM This component always succeeds. It causes the external
name (that is, the actual letters) of the current
symbol to be placed in the output table of the
component whereof this component is a part.

IN STAL This component functions exact 1 y 1 i ke N.£1.ME, except that
the actual symbol (not the internal name) is placed
in the output table of the component whereof this
component is a part.

COMPUTE (VARIABLE= EXPRESSION)
This component always succeeds. It has the effect of
performing the assignment indicated. Each variable
appearing in the argument of COMPUTE must be declared;
syntax for declarations and expressions is described
in subsection E.

One important class of variables is that of system
cells. The available system cells are listed in
subsection G, but two important ones will be mentioned
here.

J is the character-scanner. One way of skipping
two characters is to match the component COMPUTE
(J = J+2).

EQUADR is the symbol-table position of the current
symbol. To return att~ntion to the symbol with
position n, match the component COMPUTE
(EQUADR == n).

6. Anomalous Components

There are exactly two anomalous components.

** This component always fails.

MULTICS SYSTEi;1-PROGRAf'-1MERS' MANUAL SECTION BN.4.02 PAGE 6

II This component fails unless the next character in the
input stream is a carriage return. After this
component has been successfully matched, the scan has
been advanced beyond the carriage return.

7. Definition Components

A definition component is written

$ (<string>$)

or

(<integer>)$ (<string>$)

A definition component always succeeds. The component
is literally added to the output table of the component
whereof this component is a part.

8. Sentence-name components

A sentence-name component is written

<narne of sentence>

A character-string is the name of a sentence if the string,
immediately followed by two periods, appears at the left­
hand edge of some TMGL line. When a character string so
appears, it defines the start of a trail whose passage
involves the matching of various components.

The trail-following algorithm is discussed in subsection H.

Sooner or later, the trail wil 1 come to an end. If and
only if (but see functions exit, £1, D~lJ_) a definition
component has been reached yet, the sentence-name component
has succeeded.

As the trail is followed, the components matched may be
adding to the output table of the sentence-name component.
When the trail comes to an end, this output table is trimmed
back to where it was just after the last definition
component was matched.

If the sentence-name component C succeeds, it has some
output table T. A pointer to T is placed in tile output

f"'

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 7

table T' of the component C' whereof C is a part. To say
that C is a part of C', we now understand, means simply
that C is encountered along the trail out of C'.

B, Grand Plan

Every TMGL-written compiler fol lovvs the fol lowing scheme:

1. By means of a mechanism described in subsection E, a
super sentence name is found.

2. The trail from the super sentence name is followed. As
soon as any immediate subcomponent of the super sentence
name succeeds and produces an output table, that output
table is activated. (\,varning: see subsection J, items
4 and 8).

3. When the trail comes to an end, the compilation is complete.

Thus, for example, consider the problem of programming
a compiler to !!translate" English text by reversing the
spelling of each 1r1ord. This compiler 1t✓0uld translate
"You never outgrow your need for Multics11 into 11 0uy reven
worgtuo ruoy deen rof scitlum. 11

A complete TMGL program to do this is displayed in subsection
I. In brief, the structure of this compiler is as follows:

1. 11 \pJord" is a sentence-name component 1r1hich sv,1al lo11'ls a
word from the input stream and whose butput table, when
activated, spe\11/S out the reverse of the input vvord.

2. "Punctuation" is a sentence-name component 1.ivhich s1;yallo1r1s
any stream of spaces, carriage returns, and punctuation,
and 1,vhose output table, \nJhen activated, spews out the
string which has been s1;,;al lowed.

3. The trail starting from the super sentence name loops
through !'word" and 11 punctuation" cc~npon~nts unt i 1
it can't find input of either kind; then it comes to an end.

C. OutDut Tables anci Oefinitior1~.

Activation actually is a process which, like any evaluation

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 8

scheme, requires two parameters. These are an expression
(in this case, the output table) and a list of bindings
for free variables. As it· happens, most output tables
do not contain any free variables.

At the time an output table is activated, its most recent
entry must be a definition component which has placed
itself in the table. This fact is readily deducible from
the discussion of sentence-name components above. Activation
is primarily governed by the form of definition components.

A definition component of the form

=$(<string>$)

can never contain any free variables. Consequently, additional
arguments are errors when this component is activated.

A definition component of the form

=(<integer>) $ (<string>$)

may contain up ton free variables, where n is the value
of the integer. If bindings are not supplied at activation
time, they are generated in the XXnnnn series.

Most of the business of activating a definition component
consists of going dovm the strina from left to right,
activating the elements found there. There are nine different
sorts of elements:

1. If two consecutive slashes are found, or if a new-line
character is found, then a new-line character is added
to the object stream.

2. If a single slash is found, or if three or more consecutive
blanks are found, a tab character is added to the object
stream.

3. If $F1 (<identifier>) is found, then the value of the
identified variable is incremented by one.

4. If $F2 (<identifier>) is found, then the value of the
identified variable is decremented by one.

MULTICS SYSTEM-PROGRAMMERS"'' MANUA.L SECTION BN.4.02 PAGE 9

5 .

6.

7.

8.

If $F3 (<identifier>) is found, then a decimal
representation of the value of the identified variable is
added to the object stream.

If $Qn is found, where n is some integer, then the nth
activation binding is activated. The $Qn's, in other
words, are the free variables mentioned in page 10.

If $Pn is found, where n is some integer, then the nth
previous entry in this output table is activated.

If SPn.m is found, where n and mare inteoers, then
the nth previous entry (that is, the (n+1)st topmost entry),
in this output table is examined. This entry should be a
pointer to another output table (as opposed, for example, to
a literal string). The result of activating $Pn.m is the
activation of the mth topmost entry in the table T, when
Tis the (n+1)st topmost in the current table.

Either $Pn or $Pn.m may be fol lo1rJed by arguments, 1 isted
between parentheses and separated by commas. If this
is done, the output-table entry referred to by the $Pn
or $Pn.m must be a pointer to an out ut table whose too
entr is a definition of the form <inte er> ~ stuff·).
The arguments are then the activation bindings of this
definition. The syntax for arguments is specified in
subsection E.

9. If $ <character> is found, where the character is not
Q, P, F, or), the character is appended to the object
stream.

10. If the activation process comes upon text which is not
of one of the styles (1) - (9), that text is literally
appended to the object stream.

D. Character Set

The following ASCII characters are handled unambiguously by
TMG: .

greater than

blank

period

less than

new line

comma

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 10

colon semicolon

brackets parentheses

question mark circumflex

double quote underline

plus minus

star slash

do 1 la r vertical

equals ampersand

decimal digits

The 52 ASCII letters are mapped into a 26-character set
of indeterminate case.

Each ASCII HT character is mapped into a blank.

Each other ASCII character is mapped into a percent sign.

E. TMGL S.YIJ_ta~

O. A TMGL Prog.r.am. consists of a header division, a declaration
division, a definition division, and an end card. -

<tmgl program>::=<header division>

<declaration division>

<sentence division>

<definition division>

<end card>

1. The header divisio~ generally consists of two cards.
Neither of these contains any information actually used
by the TMGL ccmpiler, but both are necessary.

MULTICS SYSTEM-PROGRAMMERS' M.ANUAL SECTION BN.4.O2 PAGE 11

<header division>: :=SYNTAX<blanl<:>FOR<blank> <id> <NL>

<.SYNTAX.> <NL>

<id>::=<letter>l<id:> <letter>l<id> <digit>l<id> <minus sign>

Optionally, the header division just described may be preceded by

$TMG<b lank>N(/)S(f;URCE

This suppresses the source listing of the TMGL program; it is
sometimes useful.

Also optionally, arbitrary FAP cards may come between
the two required cards. These FAP cards will be copied
to the FAP file of driving tables being produced from
this TMGL program.

2. The declaration division consists of declarations and
interspersed comments. Declarations are used to identify
the _super sentei,ce~me, to assign names to s~stem functions
and system cells which will be used, to identify and
ini tTal ize varfaq,.le~, to name fixed strinqs, to name fixed
character c·lasses,to declare that certain identifiers 1,~Ji 11
name f.1.§g~ V!hich may be set on entries in the symbol table,
to set logical !a~ stops in the object stream, and to
identify ~c.,!_or~ which vvi 11 be used 1,,Jithin the compiler.

<declarati.on division>: :=<de> !<declaration division> <de>

<de>: :=<declaration> !<comment>

<comment>: :=;'~<string not including<r~L>> <~•JL>

<declaration>::=<super sentence declaration>!

<system function declaration>!

<system eel l declaration> I

<fixed string declaration>!

<character class declaration>!

<flag declaration>!

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 12

<tab declaration> I

<vector declaration> I

2.1 The super sentence declaration determines the overall
flowof the compilation, as described in subsection
of B. Each compiler needs exactly one super sentence
declaration.

<super sentence declaration>: :==<sentence name>==
PROGRM <NL>

<sentence name>: :=<id>

2.2 Each system function used in a compiler must be declared.
At the time of declaring the function, the user must
assign to it an arbitrary identifier for use in his
compiler. The cases of functions with and without
an_explicit argument are distinguished.

<system function declaration>: :==<function name>=-=
<fct> <NL>

<function name> : : ==< i a>
<fd>: :=~·-<name of no-argument system function> I

in',<name of one-argument system funct5.on>

<name of system function>::=See subsection F.

2.3 System cells may be given arbitrary names and then
used as variables in a compiler. Each system cell
used as a variable must be declared.

<system eel l declaration>: :==<vadable name>==
<system ce 11 name> <i'JL>

<variable name>: :==<id>

<system eel 1 name>: :==See subsection G.

2.4 Variables other than system cells must be declared
if they are to be used. At the time of declaration,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.O2 PAGE 13

an initial value must be assigned.

<variab 1 e dee 1 a rat ion>:: =<variable name>=<signed i ntege r><fR>

<signed integer>: : =<integer> 1-<i nteger> I +<integer>

<integer>: :=<decimal integer> !<octal integer>

<dee ima 1 integer>:: =<digit> I <dee ima 1 integer> <digit>

<octal integer>::=<octal digit>Bl<octal digit><octal integer>

2.5 It may be convenient to allow an identifier to denote
a fixed character-strina throughout a compiler.
The syntax of this declaration is complicated by the
special role of dollar signs in TMGL.

Dollar signs are used as string delimiters in TMGL, so they
may not appear within strings as other characters may.
However, the TMGL syntax does not admit zero-length fixed
strings. A dollar si~n may, therefore, appear as the fi~st
chara~ter of a TMGL fixed string. In that position, it is
!l2!_ taken to be the final c!el imiter.

<fixed string declaration>: :=<string name>=$<TMG string>$<NL>

<fixed name>:: =<id>

<TMG string>: :=$<tmgs> l<tmgs>

<tmg s> : : =<string of any characters but $ and <NL>>

2.6 A name may be given to any subset of the TMGL character
set li'llhich does not contain <NL>.

<character class declaration>::=<character class narr1e>=

CHCI.RCL ($<TMG string>$)

<character class name>: :=<id>

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 14

2.7 Certain system functions described in subsection
Fallow named flaqs to be individually set and cleared
on individual entrTes in the symbol table. Each
flag to be used must be declared.

<flag declaration>::=.FLAGS.<blank><flaglist> <NL>

<f 1 ag 1 is t>: : =<f 1 agname> I <f 1 ag 1 is t> <fb reak> <flag name>

<fl agname> : : =< i cl>

<fbreak>: :=<comma> !<blank> l<fbreak> <blank>

2.8 The setting of logical tab stops is ignored by the
TMGL compiler, but a tab stop declaration must appear
i n the comp i 1 e r.

<tab declaration>::=.TABS.<blank> <tab list> <NL>

<tab list>::=<tab stop>l<tab list> <fbreak> <tab stop>

<tab stop>::= <decimal integer>

2.9 Vectors may be useful within the compiler; each must
be decTared with a subscript bound

<vector dec1aration>::=.LIST.<blank> <vector list> <NL>

<vector list>::=<vdesc>l<vector list> <fbreak> <vdesc>

<vdesc>::= <vector name> (<integer>)

<vector name>: :=<id>

3. The sentence division consi~ts of ~entence~ and interspersed
comments. Each sentence begins with its unique sentence
name and ends with the first su!?-i ec t after it. Sentence
B may begin 1,vithin sentence A-;- ui 1J11hich case A and
B will end with the same subject.

It is tempting to say that each sentence is a complete
description of the syntax of the structure associated
with the sentence-name. Actually, things are less
simple, but. the reader is referred to subsection
H for a more careful discussion.

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BN.4.02 PAGE 15

<sentence division>::=<sc>l<sentence division> <sc>

<sc>: :==<sentence> I <comment> I <pseudo sentence>

<pseudo sentence>: :=see sub sect ion F, under 11 va 1bra11

<sentence>: :=<sentence beginning> <subject> <NL>!

<sentence beginning> <sentence middle>
<NL> <sentence>

<sentence beginning>::=<sentence label>

<sentence label>::=<sentence name> •.

<sentence middle>::=<element list>!

<break> <sentence middle>!

<sentence middle> <break>

<break>: :=<blank> !<break> <break> l<NL> <break>

<element list>: :=<element> r<element> <break> <element 1 ist>

<subject> : : ==<definition> I =<definition> /<continuation>

<elel'ilent>: :=<non-definition component> I

<non-definition component>/<detour>

<non-definition component>::=<literal string component> I

<character class component>!

<starred character class
component> I

<OR component> I

<function call component>!

<anomalous component>!

<sentence name component>

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 16

<1 iteral string component>: :=$<TMG string>$!<string name>

<character class component>: :=<character class name>

<starred character class component>: :=<character class name)i',

<OR component>:: =<non-definition component> <blanks>

.OR.<break> <non-definition component>

<blanks>: :=<blank> !<blank> <blanks>

<function ca 11 component>: :=<fc \tlJi th> I <fc without>

<fc without>::=<function name>

<fc with>: :=<function name> (<argument>)

<argument>::= format varies from function to function.
See subsection F.

<anomalous component>::=**!//

<sentence name component>:: =<sentence name>

<continuation>: :=<sentence name>

<detour>: :=<relative detour> !<sentence nc1me>I (<sentence
fragment>)

<sentence fragment>::=<sentence middle>l<subject>I
(<sentence middle> <subject>

<relative detour>: :=;',<addop> <integer>

<addop>: := + !<blanks>-

<definition: :=<definition name> I

(<integer>)$(<definition text>$) I

$(<definition text>$)

MULTICS SY STtM-PROGRt\MMERS' MANUAL SECTION BN.4.02 PAGE 17

<definition te~t::=<definition element>!

<definition element> <definition text>

<definition element: :=<NL definition> !<tab definition> I

<F definition>l<P definition>!

<Q definition>l<quoted character def>!

· <free definition>

<r~L definition>:: ==<~.JL> I//

<tab definition>: :==<three or more consecutive blanks> I/

<F definition>::=$F <integer>(<variable name>)

<P definition)::=<P def>l<P def>(<P arglist>)

<P def>: :==$P <integer> I $P <integer> .<integer>

<P arg 1 i st>: :::.0 <def ini t ion name> I

<definition name>, <P arglist>

<O definition>: :==$0 <integer> ·

<quoted character def>:: =$<character not Q, P, F, or)>

<free definition>::=<text not containing other definition
elements>

4. Definition names are associated with their definitions
in the definitions divisi9!J..

<definitions division>: :=.DEFINITimJS.<NL> I

<definitions division> <defc>

<defc>:: =<definition 1 i ne> I <comrr.ent>

MULTICS SYSTEM-PROGR6.Mii1ERS" M/1.NUAL SECTION BN.4.O2 PAGE 18

<definition line>: :=<d2finition name>==<definition> <NL>

<definition name>: :==<id>

5. An encl card must terminate each HiGL program.

<end ca rd> : : =-:U~D<N L>

F. System Functions in TMGL

Method of description

VJhen used as components, most functions alv/ays succeed.
Functions which sometimes (or always) fail are labeled
11 F 11 be 1 ow .

When some functions succeed, they add to the output tables
of the components whereof they are parts. Other functions
never make any table entries. Functions which do make
such entries ate labeled 11 1 11 belo,r.r.

Some functions never advance J, the input scan pointer.
Functions which sometimes (or always) advance J are labeled
11 J 11 be lov10

1. Mode-setting functions

blanks

noblks

cardof

cardon

yescorn

Causes blanks to be significant in input.

Causes blanks to be ignored in input. This
is the default case.

Causes new-line characters in input to be
treated as blanks.

Causes new-line characters in input to be
significant. This is the default case.

Causes strinos of the form of PL/I comments
(/*string*/)~to be ignored whenever noblks
mode is in effect. -----

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 19

nocom

lists

nolsts

refoff

refon

Forces the programmer to handie PL/I comments
above the adapter level. This is the default
case.

Causes each compilation to produce a source
listing in the BCD stream. Also causes collection
of cross-references. This is the defau7t case.

Suppresses production of source listing and
collection of cross-references.

Suppresses collection of cross references.

Causes collection of cross-references.

2. Text-scanning functions

char(<character class name>) JF
Same as unadorned <character class name>

string (<character class name>) J
Same as <character class name>,',

delete J Same as 11 blank,',11 , \J,Jhere 11 blank11 is the character
class whose sole m2mber is the blank character.

eolmrk JF Same as 11 /;ii.

glot JT Runs wild if used in cardof mode. Otherwise,
enters in output table the string which starts
at J and is terminated by (does not include) the
next new-line character.

mark Saves current scan position (J) in a secret place.

reset J Returns scan to position it had at last use
of mark_.

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 20

3. Symbol table routines

marks

instal TF

nal)le TF

find F

If in·noblks mode, executes delete. Then, causes
blanks/noblks mode to be set to blanks. Until
furthe·r notice, all scanned characters go into
a svmbol buffer, which is initially cleared.

Fails if symbol buffer is empty. Otherwise, the
symbol buffer is combined with system cell contxt
to determine a location (eauadr) in symbol ta51e.
System cell intval. is set to contain the value of
the decimal integer, if any, at the head of the
symbol buffer. This symbol-table entry, if it
was not set before., is set to show the contents of
the symbol buffer as the external name of the
symbol. This external name is entered into the
output table. An internal name., of the form
XXnnnn, is associated with the symbol-table slot.

Same as instal, but the created name, not the
externalname, is placed in the output table.

Similar to instal, but no output-table or symbol­
table entry is made. A typical use .for find is in
compilers for block-structured languages-:--Several
concentric contexts may give rise to a number of
possible symbol-table slots for a variable of
given external name. Before deciding that an
appearance of the variable is new, the compiler
must try to find the variable with contxt set to
each surrounding value.

enter (<literal string component>) T

a 11 oc T

Same as r@.!ne, but the string is used instead of
the contents of the symbol buffer.

Similar to 11 name 11 , but a nul 1 string is used
instead of the contents of the symbol buffer.
Useful for temporary storage; each use produces a
ne,tJ slot.

getnam T Puts external name of current symbol (identified
by eguadr) in output table.

namest T Same as getr§.m.

MULTICS SYSTEM-PROGRAMMERS' fvlANUAL SECTION BN.4.02 PAGE 21

getcrn T

getval

noflgs F

Puts internal name of current symbol in
output table.

Sets intval to correspond to current symbol
(see TnstaT).

Fails if any flag is set on the current symbol.

chkflg(<flagname>) F
Fails if the named flag is not set on the
current symbol.

setflg(<flagnam2>)
Sets the named flag on the current symbol.

clrflg(<flagname>)
· Clears the named flag from the current symbol.

diet

subsav

subst

Causes printing of cross-reference table in
the BCD stream.

Stores external name.of current symbol in a
secret place.

Replaces internal name of current symbol by the
name last saved by subsav. These two routines
a re used, for examp Te~---T ri the Tt-lG L comp i le r
itself. The declaration

name 1 = ~·,name2

causes nam22 to become the internal name of name1,
among other things. This is accomplished by
subsav/~...:~st.

4. Parse control functions

alex Does nothing

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 22

exit

nogo F

nu 11

Somewhat similar in ~ffect to=$($). That is,
this component ends the trail which led to it.
However, this component is different from=$($)
in that· it makes no entries in any output table.
Even its predecessors' output (since the last
subject along the trail) is discarded.

Same as 11 ~h',11 , but !J.Q.9.2_ s-t-ops even deader,
ignoring any following detour.

Acts 1 ike "=$($) 11 , even to the point of treating
its detour like a continuation. See subsection
J, l tern f/3,

parsdo(<parsdo argument>) J
Causes the trail starting at the argument to
be fol lovJed. Each time a ccmponent along this
trail produces an output-table entry, thet entry
is activated. The trail must end by failing.
Running off the right end of the argument leads
to disorder. The parsdo function is used by the
TMG interpreter to process the super sentence.
Rather than store up an enormous output structure,
a sentence may utilize earsdo to get rid of output
as soon as it is determined. See subsection J,
items 4 and 8.

<parsdo argument>: :=<sentence name>!

<element> <break> <element 1 ist>

not (<sentence middle>) F
Succeeds only if its argument, if it \.vere here
in place of this component, 1t1ould fai 1. i\Jqt
may sneak J ahead to test its argument against
the input, but the input will later be backed up.
For example, matching a string constant v.1ith 11 $$$
marks lettep', instal $$$11 may, if the second 11 $11

i~ not found, cause a spurious entry in the symbol
table. Better is

$$$ marks letter* not (not($$$)) instal

arbno(<sentence middle>) JT
Same as component x, with

x1 . . <sentence middle>=$($p2$p1$)

MULTICS SYSTEM-PROGRtli'-'iMERS' MANUAL SECTION BN.4.02 PAGE 23

valbra(<varg>) F
Serves as a subscripted transfer. Valbra
(<vs name>) is the same as

valbra (<vs interior>)

where this is the interior associated with the
name in a <v pseudo>.

Valbra (n nl/el stuff) is the same as

if (n .ne. n1)/el valbra (n stuff)

except that subsection J, item 1 does not apply.

valbra (n **) fails.

<p_seudo sentence>: :==<v pseudo> l<e pseudo> l<l pseudo>

<varg>: :~<vs name> l<vs interior>

<e pseudo>: :==see belovJ, under 11 encode 11

<1 pseudo>: :=see be lov,.1, under 11 loca 1' 1

<v pseudo>: :==<vs name> .. <vs interior> <~JL>

<vs name>: :=<id>

<vs interior>: : ==<primary> <breal◊;'d~ I

<primary> <break> <ve 1 i st> <break>~',;',

<ve 1 is t> : : =<primary>/ <detour> I

savtre

getree T

<primary> /<detour> <break> <ve list>

Copies last output-table entry into system-cell
tree. See subsection J, item 3.

Enters contents of tree into output table. These
functions are of some value in handling assiqnment
~tatements. Code for the left-hand side is ~asy to
prepare when that side is first see~.- But there is

MULTICS SYSTEM·· PR.OGRAMi'"1ERS' MANUAL SECTION BNo4.02 PAGE 24

no sense in emitting that code until the right-hand side
is translated. The left-hand code may be saved and then
emitted with savtre/aetre~.

if (<bexpr>) F Fails if and only if the boolean expression is
false.

See subsection J, item 5.

<bexpr>: :=<bprimary> I <bprimary> .A~~D" <bterm>

<bprimary>: :=<relation> I (<bexpr>) I .NOT. <bprimary>

<relation>: :=<aexpr> .<rel op> .<aexpr>

<re 1 o P> : : == NE I E I L I LE I G I GE I E Q I LT I G T

<aexpr>: :=See below, under comeute.

5. Miscellaneous Functions

encode (<ea ra>) JF
Seis a multiple-position switch to show which (if
any) of a set of enumerated fixed strings occurs
in the input stream.

encode (<es name>) is the sarne as encode
(<es interior>) VJhere this interior is associated
li'Jith this name in an <e pseudo>.

encode (n s/ni stuff) is the same as x,

where

x •• s/x1 compute (n=n1) exit

x1 •• encode (n stuff)

encode (n **) fails

<earg>: :=<es name> l<es interior>

<e psuedo>: :=<es name> •• <es interior> <NL>

<es name> : : =< i cl>

<es interior>: :=<primary> <break> ;'d,/

MULTICS SYSTEM-PROGRAMMERS .. i-tl\~JUAL SECTION BN.4.02 PAGE 25

'<primary> <break> <ee list> <break>;',;',

<ee list>: :=4<TMG string>$/<primat·y> I

$<Trv"1G str-ing>$/<primary> <break> <ee list>

type (<literal string component>) .
Causes the last input line and the given string
to be appended to the console stream.

cvtd (<variable name>) T
Adds to the output table the decimal
representation of the value of the given primary.
The variable may not be a system cell.

cvto (<variable name>) T
Adds to the output table the octal
of the value of the given primary.
may not be a system cell.

compute (<assignment list>) J

representation
The variable

Makes assignments to variables and to descriptor­
list positions. See subsection J, item 5. The
striking thing about the 11 compute11 furiction is
that the effects of 11 compute11 are never \rJithdravm.
This fact deserves careful discussion.

Suppose the sentence-component S is being matched,
and suppose that the trail from S runs through
non-definition components A, B, and C. If A and B
both succeed and C fails, S should fail and the
side-effects of matching A and B should be
rescinded. For example, matching A might have
caused an advance of the scan pointer, J] Before
continuing at S's detour, the system must restore
the value of J which was in effect when S was
entered. Other, nameless, system variables ~ay
a 1 so be res to r·ed.

The~eff?cts of matching compute comoonents are not
qenerally rescinded.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN .4. 02 PAGE 2 6

Variables mentioned in 11 compute 11 arguments may be
of any of five types. Ordinary declared variables
and system cells are the simplest of these.

Vector elements may be set by simply naming the
vector within parentheses. The subscript is
implicit, and initially one. To change or to use
the value of the subscript of a vector, manipulate
the vector name.

Connected to each entry in the symbol table is a
description list of indefinite length. To refer
to the nth entry in the descriptor list of the
current symbol, use the notation 11 DESC(n) 11 •

<assignment 1 i st>:: =<assignment> I

·<assignment>, <assignment 1 ist>

<assignment>: :=<1 hs>=<aexpr>

<lhs>: :=<variable name> !<vector name> I (<vector name>) I

DESC (<aexpr>)

<aexpr>: :=<addop> <term> !<term> <addop> <aexpr> !<term>

<term>: :==<primary> !<primary> <mop> <term>

<primary>: :==<integet-> l<l hs> I (<aexpr>)

Note that DESC, if it is used, must be declared as
if it were a built-in, argument-taking function of
the same name. For example, see the word-counting
program in subsection I.

local (<larg>)
Hides the values of named variables (other than
system cells). If the trail nov1 passing through
local comes to an end before coming to a subject,
most components will, as mentioned above with
compu_te, have their effects r·escinded.

The effect of rescinding local is to restore the
hidden values to the variables.

r
MULTICS SYSTEM- PROGRAMMERS.. MANUAL SECTION BN.4.02 PAGE 27

local (<ls name>) is the same as· local (<ls interior>)
where this interior is associated with this name in an
<l pseudo>

<larg>::=<1s name>l<ls interior>

<1 pseudo>::==<1s name> .. <ls interior> <NL>

<ls interior>: :=<variable name> <blanks> ~·:;':!

<variable name> <blanks> <ls interior>

G. System Cells in TMG

tree

contxt

J

equadr

intval

Used by 0etree/savtre (subsection F)

Combined with external name to find a symbol-table
slot. See instal, ~, find, and enter in
subsection F.

Scan pointer, counts one per character, goes up to
next multiple of 80 at new-line character.

Specifies which slot of symbol table is that of
current symbol. Can be set by the following
functions:

compute
instal

find
name

enter
a 11 oc

If equadr set by anything besides comoute, or if
~etval matched, contains value of decimal integer
. if ar1y) at beginning of current symbol.

H. Trail-following in TMG

When a sentence-name component is matched, a trail is
fol lo1ived through various parts of the compiler. The course
of this traj_l determines whether or not the sentence-name
component will succeed, and, if it will succeed, what
output table will be prepared for it.

,,...

MUL T res SY s TEM- PROG:>-.AMMERS., MANUAL SECTION BN.4.02 PAGE 28

This subsection describes TMG's trail-following algorithm.

When sentence-name component A is to be matched, TMG looks
for a sentence beginning 11 A .• 11 • Exact·ly one such sentence
should be found. The trai 1 from 11 A, • 11 generally proceeds
from left to right, ignoring card boundaries and ignoring
sentence labels (~, 11 B •. 11) of embedded sentences.

As subsection E makes.plain, there are then two sorts
of objects which may be encountered in this left-to-right
motion: elements and subject~.

Subsection E also notes that there are tvJO sorts of elements,
those with detours and those without.

An element without a detour is just a non-definition component.
This component is matched. If the match succeeds, the
blanks/noblks mode is restored to what it 1;i1as before the
match, and the trail continues to the right. If the match
fails, the trail comes to an end (almost - see Item 1
in subsection I).

Each element E of the other sort consists of a non-definition
component and a detour. The component is matched, and
if the match is successful, the trail continues to the
right.

If the component fails, the detour is examined. There are three
distinguishable cases.

The case of a relative detour is simole in concept. The
detour 11 ;'.+1 11 , for exampTe~--generally.allows the trail
to continue at the next element right-ward. Thus, an
optional comma could be matched by the element 11 $1 $/;',+1 11 •

Before using relative detours, check with Item 2 of subsection
I •

When the detour is a sentence nam~ S 1 the trail continues
from the sentence label S.

lr!hen the detour c~msists of some parenthesi7ed_~n'c§_Q_Ce
rraomen~, the trail moves through this fragment (and probably
beyond 1t) as if it had stood in the place of the original
element E.

When the trail reaches a subject, the definition is matched. If
there is no continuation portion, the trail co~~s to an end. If
a continuation 11 C11 is present 1 the trail contfnues from 11 C •. 11 •

MULTICS SYS.TEM-PROGRAMMERS' r111ANUAL SECTION BN.4.02 PAGE 29

I. Sample TMGL Programs

This subsection consists entirely of three highly-annotated
TMGL programs. These programs are directed to (and written
by) one who starts from ignorance of both TMGL and compiler
structureo Consequently, the examples have nothing to
do with compilers; TMGL is hairy enough by itself.

The three examples should be studied in the order in which
they appear.

syntax for wordflipper
.synt,1x.

* * identity super sentence name

* tlipper:=progrm

* .:, declare functions used

* r0toff=*refoff
1Jldnks=*blanks
marks=*marks
install=:*instal
type=*"'type
*
* name useful character classes

* letter=charcl($abcdcfghijklmnopgrst~vwxyz*$)
pn ncts=chctrcl (Ji • , 11 ():; '?[].'ii)
garbage=charcl(iS%<>-_+-/1=60123456789$)

* mandatory 11 .tabs,. 11 declaration

.tabs. 1
* here is the super sentence. it looks for "***" to
* stop on. It it dcesnt gEit 11 ~0 :<1-c11 , it peels a word or string of
* punctuation marks off the input. Since this is the super
* sentence, not just an ordinary one, the output table
* prepared by each w~rd or punctudtion match is immediately
* activated.

*
flipper~. refoff
tlipperJ •• $***i/flipper1 lastline **
*.
* It the 11 *"'*n had been found, we would have moved on to
* u,:,*" and to a halt.. But gettin,J to flipper,1 ·means no"**~'" yeL

* flipp~r1 •• word/flipper2
*
* whether or not we have peeled off a word, we drop from flipper1
* to flipper2,
*

MULTICS. SYSTEM-PROGRAMMERS' MAf\JUAL SECTION B~J.4.02 PAGE 30

flippar:2 •. punctuation/flipper:4 **/flipper3

* * and if we find ,.my punctuation, back we go to look for: 11 **;;'"·
* * we use flipper4 to plow through illegal char~cters.

* flipper4 •• garbage* type($illegal character in above line£) **/flipper]

• To handle a word, we split off the first letter and
* put this out after the flipped version of the 11 word 11 which is left.
* It there is nothing left, the flipped version of the original
* word is just the first (only) letter.
*
word •• blanks marks letter install word/(=p1) =S{$p1$p2$)

Notice that in the detour: to the "word" component, we use
t he a b b r: e v i at ion 11 p 1 " ,: hi ch w e must de f i n e be low ~ The pun c tu a ti on
copier: picks up either a string of graphics or a newline character
each time it succeeds. Notice that install will fail if 11 puncts* 11

picks up nothing.

punctuation •• blanks marks puncts* install/punct2=p1
punct2 .• //
lastline •• =$ (//$)

.*
* here is that defi~ition we neeiled.
*
.definitions.
p1=1, (:tip1$)
end

,...

MULTICS SYSTEM-PROGRAMMERS' MJ.\NUAL SECTION BN.4.O2 PAGE 31

Syntax for
.syntax.

English-to-Pig-Latin

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Pig Latin is probably the nearest
(e.g., Cockney chyming slang) thdt the
produced. Several dialects exist, and
described as follows:

approximation to cant
United States has ever
this compiler may be

1. Single-lettar wor1s are unchanged, as is punctuation.

2. Each word beginning with a vowel has "YAY" appended., Words
beginnin9 with "Y" irntn<!diately followed by a consonant ("yclept," for
exa~ple) are considered to fall into this category.

3. Each word beginning with a consonant striug is altered by
rotating tlut consonctnt string to the end and then appending "AY".
It a ";1 11 is moved, as in "quid" oc 11 squid," its "u" moves with it.
The letter "Y" is not part of the initial consonant string .5.n "scythe,"
.although it is in "yaws."

For the purists, we here acknowledge that Pig Latin is really an
aurally constructei langua3c. Our rules would be rejected by any
nine-year-old, who would know that the Pig Latin for "once"
is "unsway,'' not "onceyay"; "hour" should become 11 ouryc1y, 11 and so o:i.

There is a.nothGr peculiarity to written Pig Latin, or rather to
the ~ritten-Englisl1-to-wcitten-Pig-Latin translcttor. The transformation
is expansive, possibly by a factor of two. Accordingly, this compiler
maintains an output column counter, and a new-line character is
emitted whenever this output column counter gets large. New-line
=haracters in the input file are ignored unless they precede paragraph
indent-.:1. tion.

These declucations should not be mysterious

* pigger=progrm
d al etc·= *ctel ete
retotf=*retotf
blan ks=*.tilan ks
mc1.rks=*marks
type=>:<>:-type
install=*instal
vowcl=charcl(iaeioui)
c:rn s:rn ant =charcl (J:i1cdf gh j klrn npgrst v w xyz*$)
lotter=ch~rcl(~abcdefghijklmnopgrstuvwxyz-$)
c~nsonant-not-1y=charcl($bcdfghjklmnprstvwxzi)
puitcts=clwrcl (.S • , "():; ?[JI)
gar:bage=chctrcl(:.>$%<>-_+/!=&0123456789:ti)
• tabs. 1

MULTICS SYSTEM~0 PROGRAMMERS" MANUAL SECTION BN.4.02 PAGE 32

• A paragraph begins with five spaces

* paragraph=$ $

* * declare variables for column-counting

* startword=O
column-count=O

*
*
*
j=*j

*

we need access to the system scan pointer, j

* If column-count gets here, we generate a new-line

* right-rnar9in=60

* • here is that super-sentence

* pigger •• ref off
pigger-1 •• $***$/pigger-2 lastline **
pig3er-2 •• test-width word/pigger-3
pigger-3 •• punctucttion/pigger-5 **/pigger-1
pig;cr-5 •• pigger-4 **/pigger-1
pigJer-4... garbage* type (:t>mess above$) =$ (.i)

* * "test-width u is a modest little rou ti nc~ which a 1 w:1 ys succeeds
* and which emits neY-line ~haracters as needed.

*
test-width •• it{column-count .ge. right-margin)/(=i($)}

blanks delete cornpute(column-count=O)
lastline ••

*
=$ {/ /$)

*
*

The 11 word 11 routine is not trivial ..
easy case of one-letter words.

First, it sorts out

word •• blunks one-letter-word .OR. big-word =p1
one-letter-word •• marks letter install

not (letter)
=$ ($f1 (col11mn-count) $p.1$)

*

the

* Now comes the monster. It will be put down first, then explained

*
bi~-word •• compute(startword=j} marks

vowel/big-word-1 **/big-word-4
big-worct-1 •• ly$/big-word-2 **/big-word-3
biJ-worJ-2 •• consonant-not-qy* iqu$/*+1 install

marks letter* install
compute(column-count=column-count+j -startword+2)
po.rker = $ (:lip1 {p3,p2) $) ·

bi~-word-3 •• consonant/(marks compute(column-count=column-count -1)}
big-word-4 •• letter* install

compute{column-count=column-count+j -startword+3)
porker = $ (4ip1 (y,p2) :E)

porker •• - porcity

*

~

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
~(

*
~'
*
*
*
*
*
*
"'
*
*

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 33

Here w~ 90. You should know that 11 porcify" is a definition which
takes a split word (say, "squid," split into "sg:u" and "id") and
pro ct u cc s p i 'J La. ti n • S o the poi n t of II bi 9 w o r d '1 is ra a. i n 1 y j us t to s p 1 i t
words into pieces for "porcify. 11

we start by noting the input scan pointer, J. We will use J
to compute the guantity of output which we have produced; in the
cas2 of words starting with consonants, for cxaople, the output
produced is as long as the input (ending jminus starting j)
plus two for the added ''ay. 11

Now we use "m:1rkn dnd we start collecting letters.
Suppose the first letter is a vowel. In this case, the detour of
the 11 vowel 11 component is irrel~vant, and we proceed to "bi3-word-4 ...
The "letter*" compolll'!nt collects the rest of the word a.nd
the ''compute" ups the column-count to show the wo::::J and tho
coming "yay". Now we go to ''porcify with an iuaginary word,
5plit into a leading 11 y 11 and a trailinJ string ·which is the
word we really found.

Suppos2 the first letter of the word is not a vowel ("big-word-1 11),

but rather it is 11 y 11 • Then we skip the detour of the "Y" c:omponent, and
we continue with big-word-3. If a cons~nant f~llows the "Y", then we
jrop immediately to the next line, which is exactly where we were a
minute ago when the word began with a vowel. If a non-c:onsonant follows
the 11 y, 11 howev,~r, we slyly reinitialize the lettl-~r-collector with a new
"m<tcks" conpon<0nt. Only then do we drift down to the next line~, where
the code which thinks it is converting "am" into "amyay" is actually
converlin<J "yam. 11

Finally, s11ppose the word begins with some letter not one of
[a,e,i,o,u,yJ. We collect its initial string, collect the remainder,
and porcify the word split into this pair.

The punctu~tion-handler is rather an anticli~ax.

punctu~tion •• blanks comput2(startword=j)

*
*

marks puncts* install/(
II paragraph/[=$($)) cornpute(column-count=S} =$(///$))

CO Ill p ll t e {CO l 11 m 11 - ::: 0 U ll t =CO l Un: Il - CO llll t + j - St a [t WO I:" d) = p 1

Finally, the definitions

* .detinitions.
pJ['Cify= (2):;; ('.5J2.5].1ayJ;)
p1=.ii ($p1$)
p2=$ (:£p:u;1
pJ=_ji (.t,pJ:/i)
y=:6 {y'.5)
ay=.;: (ay'./>)
end

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.4.02 PAGE 34

syntax for word-counter
.syntax~
* This compilor accepts an English text. From this, it
* produces a table showing which words occurred in the text, and
* how frequently each occurred.

*
*
* marks=*marks

here are the same old declarations

letter=charcl($abcdefghijklmnopqrstuvwxyz-$)
:1arbage=charcl (:5$%., 11 () <>: ;?(r_+/1=&012345678g$)
.tabs. 1
Cdrdof=*cardof
retoff=*retotf
count=progrm
install=*instal
new-word=*noflgs
sett la J == ** setf lg_
egua.dr=*equddr
dasc=**desc
parsdo=**parsdo
checktlag=**chkflg
getnarn=*getnam

*
*
*
*

We will be doing a fair amount of computing in this compiler.

*

"Total-words" will grow by one for every word in the input text;
"distinct-words" will only 9row when new words are found. Each
distinct word will be labeled with a pointer to the previous such
word (11 chain ") and an occurrence-count (''occurrences").

* total-words=O
distinct-words=O
chain=l
occurrences=2

*
*
* n=O

scratch cells

previons-word=O

* * The "chain'' pointers wi 11 be used when we run back through all the
* words, printin9 th?-m and their occurrence-counts. A flag {"first-word")
* wiJ.l be set on the first word i.n, so that w,~ will know where to stop
* our run. Also, each word will be given an "exists" flag so that the
• ficst appearanc6 of the word may be easily distinguished •

• flags. first-word,exists

*
Now we just pul.l in words until one of them is"***"·

happens, we print a summary.
When that

,...

MULTICS SYSTEM-PROGRAMMERS' MANUAi_ SECTION BN.4.02 PAGE 35

*
count •• cardof refoff
count-1~- S***i/count-2 header
count-2 •• count-3 word/count-1
count-3 •• garbage* = $ ($)

output
count-3

**
**/count-1

*
* When a new word comes in, we (1) set a pointer to the previous wor~,
* and (2) start an occurrence count. Old words we just count.

*
word •• marks letter* install

(total-words=total-words+1)
new-word/((desc(occurrences)=desc{occurrences)+1) =${$))
setflag (exists)
if {total-words • g. 1) / (set flag (first-word)}
(distinct-words=distinct-words+1)
(desc{chain)=prcvious-word, previous-word=equadr)
(desc(occurrences)=1)

=$ ($)

So much for the words. When they are all read in, we start producing
our summary:

haader •• =$($fJ(total-words) words altogether, $)/h1
h1 •• =$ {.5p1:iit3 (distinct-words) distinct words$.//$)

* * - 11 0utput 11 does not accumulate a giant, multi-line output structure.
• Instead, "output'' produces its lines as part of the matching process.

*
output •• (equadr=previous-word) if(total-words .e. O)/out1 =$ ($)
out1 •• pacsdo(output-linc **)

checkflag (first-word)/ { (eguadr=desc {ch,·iin)) ~•*/out 1) =$ {$)
output-line... getnctm (n-=desc (occurrences)) =$ ($p1/.:iif 3 (n:, //$)

*
.definitions.
end

MULTI CS SYS TEM-PROGR.AMMERS' MANUAL SECTION BN.4.02 PAGE 36

J • T MG L D i rt i es

1. Detour-less elements

Suppose a detour-less element fails, while matching a
sentence component C. One might expect this event to
entail the immediate failure of C, with the scan backed
up to where it was when C was encountered. This will
happen in some cases.·

In fact, the scan is backed up along the trail back to
Conly until C or some element having a det.o.u.r: is reached.
In the latter case, the tral 1 continues out that detour.

For example, the sentence

will always succeed, even though it should, according to
subsection H, always fail. To get around this sort of thing,
try

This anomaly ls not observed along trails being followed by
II PARSD 011 •

2. Relative detours

The effect of relative detours is highly implementation­
dependent. As the detour for any component P,xcep1 a <fc
with>, 11 -;':+1 11 ls reliably "continue to the the rlght11 •

To get this effect with a <fc \JIJith> component, use 11 ,•:+2 11 •

Don't use other relative detours.

3. P1, Savtre

These functions are supposed to treat the most recent
output-table entry. They wi 11 do this successfully .on..Dt.
if that _en.:t ry .1.'l;tas..J.Dade_b.y_...tb..uast componP,nt matched. a Jang
the t ra i 1. J n te rven i ng components, even though they made
no entries in any output table, will queer it.

4. Parsdo, blanks, noblks

The blanks. and nob]ks functions have no effect when encountered
along a pncsda-argument trail.

MULTICS SYSTEM-PROGRAMMERS' f'/Ll:i.NUAL SECTION BN.4.02 PAGE 37

5. Compute, if

The word II compute" may be omitted from components using
the campllte function. Also, compqte and il must never
be declared.

6. Line length

An input line to TMGL should not be longer than 80 characters.
If it is, the Diagnostic 11 preceding card unrecognizable"
may occur with reference to a blank line which does not,
of course, exist.

7. Functions and character classes undeclared

If a TMGL program nEkes use of a function without declaring
it., the 11 card not blank after component list" Diagnostic
may appear.

8. Parsdo

Along trails followed by parsda (for example, within the
super sentence)., no function which requires an argument
will be properly interpreted. Starred character-class
components will also be mistreated.

MULTICS SYSTEM-PROGRAMMERS" fv1ANUAL SECTION BN .L~. 02 PAGE 38

K • REilB.E.hlC..E.S.

1. McClure, R. M. "TMG - A Syntax Directed Compiler , 11 in

Proceedings of the ?Dtb ..National ConfPrence_ Ne1iv York:

Association for Computing Machinery, 1965. Pp. 262 - 274.

2. Fasciano, V. A. 11 TMG - A Syntax Directed Compiler.!'

BTL Paper Pd - 550029.

