
MULTICS SYSTEM - PROGRAMMER'S MANUAL

Identification

Explanation of EPLBSA Code

Jean C. Scholtz

Introduction

Page 1

SECTION . BN. 3. 02

PUBLISHED: 2/24/67

Pass two of the EPL compiler (EPL2) uses as input the macro
code produced by pass one and produces as output ~PLSBA code.
This code consists of block$ of GE-645 instruc·tions identi­
fied by certain symbol sequences. It is perhaps helpful to
think of EPL2 as analyzin~ the macro code and deciding which
block of code (or routine) to output. A detailed description
of the GE-645 instructions may be found in the GE-645 Manual.
The discussion presented here will be of the general purpose
of the various routines produced by EPL2. The following
notation will be used. When one or more digits appear in a
symbol these digits will be updated as the symbol reoccurs.
For example, pl.O (used to denote the prologue) will be
updated as follows:

pl.l, pl.2, ,·p2.O, p2.l, , p2.6, etc.
The blocks so denoted will be chained together with tra
instructions. It should be noted that these blocks will not
usually appear in order in the pass 2 output. That is, p8.6
might appear before pl.1O.

Sequence of Execution

Upon entering a procedure there is a certain order in which
blocks of code are referenced. When a procedure is entered a
transfer is made to the save routine where the bases and
registers are stored and the next stack frame is set up. If
the validate procedure option is in effect, external procedures
next call .vt. Internal entries next update display, using .cp,
which is supplemented by other code at block level 3 and by
.cpl at levels over 3. A transfer is then made to the pro­
logue block of code. The sequence here is as follows:

1) If the block is an on-unit,·a transfer· is made.to
.onO to establish the correct action for the on­
condition.

2} The next three activities to be executed are inter­
mixed in order of their appearance in the EPL text.
These are setting ~p of handlers (.hO) to take care
of on-conditions, the establishment of specifiers
for automatic data, and the setting up of dope for
automatic adjustable data·.··

MULTICS SYSTEM - PROGRAMMER'S MANUAL SECTION

Page 2

BN 3.02

3)

4)

5)

6)

If the block has an epilogue, the epilogue handler
is now created.
If the block contains any automatic data to be
initialized, the routine .ial.O is now activated.
In order of declaration during the prologue, the
auto varying strings are set to null by calling
.vl .
At the conclusion of these activities, control is
passed to the main sequence (sl.O).
After the s sequence has been completed,_control
is passed to the epilogue sequence.

In the epilogue sequence the following order of activities
prevails:

1)

2)

If this was an on-unit, .offO is called to restore
the condition.
In order of declaration during the epilogue block,
on-statements are reverted,and automatic varying
strings are freed by a transfer to .v2.
Next, the epilogue handler is restored.
Finally, a transf.er is done to the return routine
. rt .

Explanation of Sequences

There are three main symbol sequences appearing in EPLBSA
code - pl.O, sl.O, and el.O. pl.O is termed the prologue;
sl.O is the block or main sequence; el.O is the epilogue.
Very generally pl.O is concerned with defining variables and
constants and setting up proper storage. sl.O contains the
in-line code for executing each EPL statement. el.O resets
certain conditions as they were before execution. Note that
pl.O, , pl.n (where n is some digit) refers to the first
block level of the EPL procedure. As soon as a procedure
block or a begin block o~curs within the main procedure
block, the prologue will be at level two - p2.0. sl.O and
el.Oare updated similarly. At execution time the entire
prologue sequence for every block is executed before the
block sequence. This, in turn, is executed befor~ the epilogue
sequence. In the output the Pi, s, and e blocks of·code will
be intermixed. el.O could appear before pl.l, but the order
of execution is as explained above.

Unique Symbols and Symbol Sequences

These three main symbol sequences contain some unique code
but they also contain references to many other blocks of code,

./:

)

r MULTICS SYSTEM - PROGRAMMER'S MANUAL SECTION

Page 3·

BN.3.02

each block being identified by a certain symbol. These
blocks of code will be classified as to whether they are
referenced by the prologue, main or epilogue sequence. The
bulk of the output of pass two falls under symbol sequences,
of which pl.O, sl.O, and el.Oare examples. Other blocks of
code are identified by unique symbols. These blocks of· code
appear only once in the pass two output. They are usually
closed subroutines to be referenced many times by other
blocks of code. The terms symbol sequence and unique symbol
will be used to subdivide the discussion of EPµ3SA.eode.

Code Referenced by Epilogue Sequence

The epilogue sequence references only one symbol sequence,
.offO. The .offO blocks of code deal with on-conditions. In
particular, suppose the EPL procedure reads as follows:

a: procedure;
on overflow x = 6;

end;

The activity "x = 6 11 is called the on-unit. The .offO block
is invoked in the epilogue of the on-unit to reestablish the
on-unit.

The two unique symbols referenced from the epilogue are .rt and·
.v2 .. v2 contains code to free automatic varying strings
declared in the block .. rt is the return routine. MSPM BD.7.02
discusses this in detail.

Cod~ Referenced by the Prologue Sequence

The prologue uses blocks of code that have to do with setting
up storage for the variables used in the procedure. The
following are the symbol sequences referenced:

.iaO - These blocks contain the information to be stored
in the dope vectors for v~riable~ with tha auto-
matic storage classification. · ·

.hO These symbols name condition handlers (EPL design
journal #3) which are used to preserve chains of
stacked on-units. Condition handlers appear for
each condition in the stack frame of each block
in which the condition is mentioned. Handlers are
chained by the prologue, pushed down by
on-statements, consulted by signal statements
and popped up by revert and epilogue.

r MULTICS SYSTEM - PROGRAMMER'S MANUAL SECTION

Page_4

BN. 3. 02

.onO - This code is invoked in the prologue of an on­
unit to roll the on-unit stack back one level.
Its work is undone in the epilogue by a corre­
sponding .offO •

• svO - A special temporary used during the prologue of
an on-unit .

• al These symbols appear when a call is made within
a procedure. The argument list to a procedure
called from block 1 appears- at sp!.al .

. ial.O - Initialization of automatic storage is· don~ by
this routine. It is entered upon completion of
the remainder of prologue pl.O .

• asl - These symbols define the limit of automatic
storage for each block .

. ul - These symbols denote stack space available for
local scratch .

. wl - There is one of these constants per block.
spl.wl will hold the pointer to the dope during
calculation of adjustable declarations for the
block. Since this calculation is done in a
constructed inDer block, spl .wl actually lies
in the inner frame. ·

.bl - These blocks of code are used in the calculation
of adjustable bounds and lengths. A routine
(whose name is created by pass one) to evaluate
each variable quantity is called by tsx 2 during
evaluation of adjustable dope.

The following are unique symbols referenced by the prologue
block:

.cp - This block of code copies display (MSPM BP.3.00).
for internal blocks. It copies the innermost
statically embracing stack pointer from the argu­
ment list into display, and just in case this
block was invoked from another segment, restores
lb ~ lp ·

.ds - The sp !.ds is the actual display. The display
contains pointers to the statically. embracing
stack frames in case it is.necessary tQ use
(in this inner block) some variable which has
been declared in an outer block .

• vl - This is a block of code used to set automatic
varying strings to null.

,'

,..

MULTICS SYSTEM - PROGRAMMER'S MANUAL SECTION

Page 5

BN.3.O2

.dpl - This block of code evaluates adjustable auto­
matic dope and allocates storage for the ·
associated data .

• uO - The spl .uO is always equivalent to 32 decimal .
. This is local scratch available at block levels.

Code Referenced by the Main Sequence

The main or sl.O blocks reference the following symbol
sequences:

.yl - These indicate symbols created in pass two for
various purposes •

. isO - These blocks of code deal with initializing
internal static storage .

. idO - These blocks of code are executed before .isO.
They set up specifiers for the internal static
storage. The .idO block is entered by linkage

-fault on first reference to internal static •
• ctl - One of these blocks of code appears for every

controll~d adjustable variable. Information
~ontained i~ this block ts used to evaluate the
adjustable declarations .

. f35 and .f71 - These are routines used to convert a floating
point number to a fixed point number. The routine
used depends on the number of bits desired in
the result - thirty-five or seventy-one. The
fixed to floating conversion is simple enough
that it calls no routine but is done in-line.

The following are the unique symbols which are referenced by
the main ors blocks of code:

.sv - This is the save routine. Unlike the save expan­
sion discussed in MSPM BD.7.O2 which is output
each time it is necessary to go down a level in
the stack, EPL 2 uses .sv as a closed routine.
This routine differs from the standard in making
possible stack frames larger than 214_1 words.
Upon exit from .sv the bp.is pointing.to the same
location in the stack as the sp .

. sbl - This block of code is used for evaluating sub­
scripts .. sbll and .sblt are symbols used within
this block of code .. sb2 is also used to evalu­
ate subscripts but a subscript range check is
included. The ,sb2 block would appear when
11 subscriptrange" has been enabled in the EPL
procedure.

Page 6

MULTICS SYSTEM - PROGRAMMER'S MANUAL SECTION

.ofO - This is a routine to compute bit offsets for
packed data .. ofl computes this offset when
the packed data is contained in a packed
structure. Both routines arrange to keep the
bit offset under 36. . ofla is a symbol used
within this block .

• dvO - This block contains the information to be stored
in the dope vectors for static variables .

• va - This piece of code is used to set up specifiers
for scalar varying strings contained in aggre-
gates, which are passed as arguments. • ·

.ei This block of code p~rforms the ~ntry for routines
used for external initial and internal static
storage .

• sa - This routine is used to create dummy dope for
scalar elements of packed aggregates passed as
arguments .

. eta and .ctb - These blocks of code make up an argument list
and call the dope vector calculator for adjust­
able based storage .. eta is used for locally
declared variables, .ctb for nonlocal .

. dpO - This routine completes the calculation of adjust­
able based dope vectors by invoking tdope - and
then returning. Each .ctO block ends with a
tra .dpO.

Miscellaneous Block of Code

.vt - This block handles the validate procedure option.

