
-
,... , MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION BL.5.04 PAGE 1

Published: 06/30/67

Identification

Process Exchange during initialization
A. Bensoussan

Purpose

During initialization page control procedures are executed
as part of the MULTICS initializer; when waiting for a
page, the procedure II page fau 1 t" issues a ca 11 to II Block"
and when the page has arrTved, the procedure II io done"
cal ls "wakeup". The "device signal table manager" is
also executed as part of the MULTICS initializer and issues
a call to "wakeup". But the MULTICS initializer has not
yet set the proper environment required by Block and wake-up
to perform their standard Jobs. Therefore, when called
durin~ initialization, Block and wake-up execute special
functions.

This write-up describes what these special functions are,
how they can be executed instead of the standard ones,
and why they have been designed the way they are.

Introduction

As explained in BL.5.00, a certain number of MULTICS segments
are executed as part of the MULTICS initializer. It may
happen that one of them is called but cannot perform its
standard function during initialization.

The first idea for solving this problem is to take advantage
of the segmentation facility by substituting to the called
segment, a temporary segment, with the same name, which
would perform an interim function F' instead of the standard
function F. After initialization, the temporary segment
would be replaced by the standard one. The segment structure
would make this substitution easy but the fact that the
hardcore supervisor is prelinked and the linkage sections
combined makes the problem more complex. Therefore, the
following solution has been chosen: Both functions F
and F' are contained in the same segment; when the procedure
is called it is able to switch to function F' during
initialization and to function F after initialization.
This implies that the code which executes F' will remain
in the procedure after initialization even if it is not
used any longer; but, as we shall see, the function F'
is a simple function and requires a very small amount
of code.

r ,

, r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.04 PAGE 2

Block and Wake-up during initialization

Durin~ initialization Block and Wake-up perform the following
interim functions:

Block calls the File System Device Monitor procedure and
returns to the caller. Wake-up simply returns to the
caller.

Block and Wake-up are written in such a way that they
can execute in 2 modeso The mode is determined by the
block_enable switch and the wake_up_enable switch in the
Traffic Control Data Block. These switches can enable
(standard function) or disable (interim function) the
corresponding module.

The next paragraphs justify the choice for these interim
functions executed by Block and wake-up during initialization.

Who calls Block and wake-up in MULTICS?

1. Block. During execution of a MULTICS process, block may
be called by:

1.1 Pa~e control (page_fault)~ when the process is
waiting for a page

1.2 Segment control, when the process is waiting for
a system data base to be unlocked

1.3 The wait-coordinator, when the process is waiting
for an event to occur

1.4 The Quit interrupt handler.

2. Wake-up. This entry may be called by:

2.1 Page control (io_done) when a page has arrived
in core

2.2 Segment control when a process unlocks a system
data base that another process is waiting for

2.3 The event channel manager (set_event) when an
event has occurred

2.4 The device signal table manager when a device
sends an interrupt.

Who calls Block and wake-up during initialization?

Cases in which Block and wake-up may be called during
initialization are 1.1, 2.1, and 2.4 (see previous paragraph).

r

MULTICS SYSTEM-PROGRAMMERS' rv¼NUAL SECT! ON BL. 5. 04 PAGE 3

Page faults are handled by the MULTICS mechanism; therefore
B,lock will be called by page fault(1.1) and wake-up will
be called by io_done (2.1). -

1.2 and 2.2 never happen during initialization since there
is only one process using the system data bases.

1.3 and 2.3 never happen for the following reason: the
only events (other than II page in core") that the MULTI CS
initializer has to wait for are completion of the following
I /0 ope rat ions:

Read tape
Read write drum
Read-write discs

in the tape reader
in fs init 1
in fs:i n i t:1

The tape reader and fs_init_1 are executed in a one process
environment; therefore there is no need for them to call
the wait coordinator; they issue the connect operation
and they loop until the status word shows that the operation
is completed.

1.4 never happens since no Quit interrupt is generated.
2.4 happens each time an interrupt occurs since interrupts
are handled by the standard interrupt handlers.

Why can't standard Block and wake-up be used?

One might think that. provided that the MULTICS initializer
has a process id and an entry in the Active Process Table
(APT). the system can be regarded. during initialization
and as far as the process exchange is concerned. as a
MULTICS system in which the number of active processes
is 1 •

But this is not correct; a one process system cannot constitute
a regular system because MULTICS makes use of system processes.

Two system processes would be invoked if we used the standard
Block and wake-up.

1. When the MULTICS initializer calls Block. get_work
tries to find the next process to run in the
ready list; but the ready list is empty. Therefore
a system process. known as "idle" process. associated
with the running processor is given to this processor.

2. When a device assi~ned to the basic file system sends
an interrupt. the interrupt handler wakes-up a
system process. known as the "File System Device
Monitor" process.

r , MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.04 PAGE 4

These two processes do not exist during initialization;
that is why standard versions of Block and wake-up cannot
be used.

System processes simulation

Since during initialization there is only one process
we have to find a way of simulating the two system processes
mentioned above.

1 • Idle process. The only purpose of this process is
to keep the processor busy when there is nothing
useful to do in the system. When Block is called
in the MULTICS initializer, it is always because
the process is waiting for a page. The simplest
way of simulating the idle process is to keep
looping in Block, testing the page table word that
caused the missing page fault to occur, and to
return from Block when the fault bits have been
removed from the page table word. But this test
already exists in page fault: The page table word
contains a software swTtch, the page out of service
switch, which is set ON by get_page and reset by
io_done. When Block returns to page_fault, this
switch is checked: if ON (the page is not in
core yet) page_fault calls Block again; if OFF
(the page is now in core), page_fault returns to
the fault interceptor.

Therefore, the only function that Block has to
perform in order to simulate the idle process,
is to execute a RETURN.

Since the MULTICS initializer is never Blocked,
any ca 11 to wake-up for the MULTI CS i nit ia lizer
can be a RETURN.

2. File System Device Monitor Process. In order to
understand how this process is simulated during
initialization it might be helpful to give a
general description of the missing page fault
hand 1 ing.

When a page fault occurs, page control is called;
if this page has already been requested, page
control calls Block; otherwise it determines on
what device the page is stored, places the request
in a job queue, and calls the Device Interface
Module (DIM) associated with this device.

,.. , MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.04 PAGE 5

The DIM scans the job queue and places as many
DC\rJs as possible in the hardware queue, for pages
~equested in the Job queue. Then the DIM checks
1f any pages previously requested by other processes
are now in core, even before the device sends an
interrupt. For each of these pa~es, the DIM calls
back page control, at the entry ' io done" J io done
builds the~ table word, sends a-wake-up to every
process that 1s waiting for the page and returns to
the DIM which deletes the request from the queue.
Then the DIM returns to page control which calls
Block.

Our process is now blocked. It can be awakened
by two different ways:

a. If a running process takes a missing page fault
which causes the DIM to be entered, the DIM,
after having placed DCWs in the hardware queue,
checks if some pa~es, previously requested,
are now in core, 1f it finds our page, it calls
io_done which sends a wake-up to our process.

b. If none of the running process causes the DIM
to be activated before the device sends its
interrupt, when the interrupt occurs the interrupt
handler signals the event in the Device Si~nal
Table (DST). Since this device is one device
used by the file system, the interrupt handler
sends a wake-up to the File System Device
Monitor (FSDM) process. When awakened, the
FSDM process executes the FSDM procedure. This
procedure looks in the Device Signal Table, and,
for each device available to the file system
that has sent an interrupt, it calls the associated
DIM which, as explained above, will cause our
process to be awakened.

Then it returns from block, page control returns
to the fault interceptor which restores the
processor state.

A simple way of simulating the FSDM process in the
MULTICS initializer process would be the following:
when wake-up is called with the process id of the
FSDM process, since this process does not exist,
wake-up performs the job that this process would
do. But, the description given below for a page
fault shows that, if we do so, because the FSDM

,...

,..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.O4 PAGE 6

procedure is executed as part of the interrupt handler,
interlock conflicts can arise in the DIM: when the
DIM is executed as part of the FSDM process, it may
find its queue locked because the interrupt occurred
while the DIM was executing.

Conclusion

The only other place where the FSDM procedure can
be executed is in Block. Wake-up, when called for
the FSDM process, could set a flag si~nalling the
fact that Block could test for executing the FSDM
procedure. But this flag already exists in the
Device Signal Table, and the FSDM procedure already
contains this test in it.

Therefore, when wake-up is called for the FSDM
process, it executes a RETURN. When Block is called,
it executes the FSDM procedure and returns.

We can sum up this discussion as follows:

During initialization, Block is called only when waiting
for a page; it does not block the process in the MULTICS
sense, but loops on the page fault until the page table
word is set with the address of the page. The function
executed by Block during initialization is: call the
FSDM procedure and return to the caller.

Wake-up is called by io_done and by interrupt handlers.
When called by io_done, wake-up is only a return since
the process is not blocked when waiting for a page. When
called after interrupt associated with the file system, .
wake-up is also a return since the FSDM process is simulated
in Block. When called after other interrupts, wake-up
is also a return because the process is not Block but
looping on a test of the status word. Thus: the function
executed in any case by wake-up during initialization
is merely a RETURN.

