
,,..

MULTI CS SYS TEf·/1-PROGRAMMEFZS.,. M!\NU,S. L SECTL,:~ BL.5.00 PAGE 1

I dent if icat).on

·Overviev,J of the Multics ln:ltializei~
A. Bensoussan

Purpose

Published: 04/28/67

The Multics Initializer (MI) is given control by the Bootstrap
Initializer (BL.4); its main purpose is to load and initialize
the hardcore supervisor and to create the first Multics
process. The Multics Initializer then transfers control
to the Multics System Control in which the establishment
of Multics operation is completed by creating various
system service processes.

The basic functions that have to be performed by the MI
have been listed in BL. □. As was said in BL. □, the different
functions of the MI are not executed in the order they
are described there. A different approach has been taken
which is explained and justified in this section. Then
a general description of each data base and component
of the Multics initializer is provided.

S t . ~ t' '. l ' • I • · . - . . · ra -ceqy OT nE: jV\LJ ·ocs . n J. u.a 11 ze r

· It might appear possible to perform the various functions·
of the MI in such a way that each of them would be independent
of the other. The MI v1ou 1 d be a simple GE 6Lt5 program,
from the beginning to the end, initializing one thing
after the other, until all functions are done, and saying
a·i: the very last morn2nt: 11 !'Jov1 I am a Multics process
and I can use all the Multics facilities available to
~n,; p1-o, 0 ss11 • Th 1· s m0 -'--l·"10,' 'nas ,., u' 1· s-:,a\·;::ir-,tao 0 c O! I -'-- I I. ! ;.__... L I .• J .. L. • ... C-\ JC~ 1 ... c ;::Jl~J :

1 o It vJould require a lar.;e amount of specic:.l purpose cocie
to perform functions that can be done automatically
by the hardcore supervisor modules provided that they
be called after their needed environment has been
established.

2. It vvoulci requ).re a lar9e amount of core m?.mory since
a 11 the hardcot:.: supend. sor segments that have t0 ue
only loaded or active when Multics ls operating, would .
have to be in co:~e at the sar~:e U.m2 during the e~~ecut5.on
of the NI. Because of the actual size of the hardcore
supervisor, the above consideration is a sufficient
reason for not taking this approach.

MULTI CS S "S TEM-PROGRAMi'11ERS,. fJANUAL SECTIOf~ BL.5.00

Therefore., the fo 1 lovJino rflf:thod has been taken: The MI
starts as a norrna l GE 645 program; this program can be
regarded as an 11 und-~r-developed11 Multics process that

P/~GE 2

has a primitive environment., as far as the fault-interrupt
handlers and 1/0 capabilities are concerned. But this
program has the following characteristic: It reads the
information recorded on the MST in several steps; each
time it reads a set of information., :tt appl5.es to it the
appropriate transformation to change the tape information
into a Multics facility; then it decides that this facility
belongs to it and uses it., so increasing its pov,1er llttle
by little., unti 1 it has establlshed the envi:~onment expected
by any Multics process. ·

The MI contains a main program which issues calls to various
entries in Multics initializer's modules. The function
performed by each entry and the order in which they are
called are such that each of them makes available to the
MI some.Multics procedures that can be used by the next
entries as if the MI were a process, even if it is not
yet.

In particular, the problem of core memory space limitations
encountered in the first method is solved by making available
"page control'' and 11 core control1 1 as soon as possible
and by using them to load the rest of the hardcore supervisor,
even i f '1 segment cont r o 111 i s not av a i 1 ab 1 e yet (I n i t 5. a 1i z i n SJ
also segment conti-ol 1,vi.thout using the paging mechanism
would require a larger amount of core).

Basically., the idea is thE; follovJing: The Multics missing
page fault handler can operate without the help of segment
control provided that the page belongs to an active segment;
that is, the page table V\Jorcl which -causes the fault contains
a pointer to the Active Segment Table (AST) entry (or
to the Descriptor Segment Table (DST) entry if the page
belongs to a descriptor segment).

Therefore, after having initialized the secondary storage
used by the file system, the DIM-s, the GIM and the interrupt
hand15.ng mechanism., the Multics Initializet· loads and
pre·· 1 inks al i the 1:Ji red-dovm supervisor segrnents. Then.,
an AST entry is created for each ex5.sting segment \JIJhich
. ''h . t ' • .L. I • '-1S ne1c er a vJ1rea··co1:,m superv1sor.segmenL nor a 02scr1p-1.or
segment., and a DST entry is created for the MI-s descriptor
seg:nent; a pointer to the .AST or DST entry is placed in
the Segment Loading Table (SLT) entry. Final'iy-the core

MULTI CS :' .'S TEM-PR0°')C\Mf1\ERS,. Ml\~JUA l_ SECTIOf✓ BL.5.00

map is initialized. The interim fault interceptor is
told to direct missing page faults to the Multics page
fault handler, and missing segment faults to a special
purpose segment fault handler (interim2_segfault), the
role of V·Jhi.ch is explained below.

P.L\GE 3

From this point on, the remainder of the hardcore supervisor
can be loaded in the 11 _vi rtua l memory' 1 provided by the
.file system, using the fol lov,Jing mechanism: 1~1Jhen a segment
is to be loaded, at the first reference, a missing segment
fauit occurs; control is given to the inter5.rn2_segfault
handler ,11-2ntioned above. This handler, looking in the
SLT, determines if the segment is a normal segment or
a descriptor segment; it builds an AST (or DST) entry
for this segmr;:;nt, us5.ng the information in the SLT, and
places a pointer to the created AST (or DST) entry in
the SLT entry. Then it calls a primitive in page control
to get a hyperpage for the page table (the hyperpage size
is found in the SLT entry), it places a pointer to the
AST (or DST) entry in each page table word, manufactures
a segment descriptor word using the SLT entry information
and returns. When a page of the segment is referenced
for the first time, a missing page fault occurs, that
can be handled properly by the Multics page fault handler.
If sometime latPr, the segment is unloaded and then referenced
again, the interim2_segfau1t handler builds a new page
table and the AST (or DST) pointer is copied from the
SLT entry to each page table word.

It should be noted that only page retrieval is possible
... t' . . t ' . . 1 • t . ~ at n1s po1n; segment retr1eva 1s no, since none ot

the segments that have been loaded from the MST has a
branch in the file system hierarchy yet. This implies
that, before the Multics segment fault handler is available,
none of the loaded segments can be deactivated, This
is guaranteed by sett 5. ng the necessary 11 ho 1 d•-svvi tches 11

in the AST entries.

The other advantage of this strategy is to be able to
use some of the hardcore supervisor modules to perform
some of the in5.t5.a15.zation functions. The best example
that can be given is the example of page and core control
that are used by the Mult5.cs Initializer as soon as they
are available, as explained above. Other examples can
be given: The GIM and the interrupt interceptor are initialized
and are added to the facilities available to th2 M! for
drum, disc 2.nci tape I/0; like p3.ge contro·!, s2;Ji-;'1ent controi
•.-Ji 11 be initial Lz:ed and used by the MI; branches c;:=m be

MULTICS SYSTEM-.. PROGRAMMERS' MANUAL SECTION BL.5.00
)

created in the file system hierarchy usin~ file system
routines; the traffic controller routine I create_KPT11

PAC ... 4

is called by the MI to create an entry for itself in the
Known Process Table, the process creation module is called
by the MI in order to manufacture the 11 stack history11

which is a process creation data base., etc.

A fundamental remark has to be made as far as the behavior
of the process exchange during initialization is concerned:
The MI uses the file system routines to read from and
write on secondary storage. The file system, in turn
uses the Multics mechanism to wait for an I/0 operation.
Thus entries n b 1 ock11 and 11 \Jl1akeup11 in the process exchange
will be exercised. It is obvious that if the MI calls
block before the traffic controller is initialized, or
if the drum interrupt handler pretends to send a wakeup
to the file system drum manager process before it is created,
one can expect the worst catastrophies to occur.

Therefore., modules 11 block11 and 11 vvak2up11 are disabled during
the most part of MI; that is, they m~rely perform a return.
They will be enabled at the appropriate point of the MI
when the traffic controller initialization is completed.

The Multics Initializer's strategy is implemented in 4
function3l parts:

1 • The first part., refer red to as II Part 111 , makes knovm
., h ' r i-,• •• l l 1:. '., r"" •• i:ne arawa e conn.guraoon, oacs a rev1 mocu 1es OT ·cne
hardcore supervisor (mainly the GIM, the interrupt
interceptor., the interrupt handlers and the process
exchange) needed for I/0 operations, initializes the
secondary storage devices if the file system hierarchy
has been destroyed., and initializes a DIM for each
secondary storaae device available to the file system.

2. The main purpose of the ~econd part~ referred to as
11 Part 211 , is to load the rest of the v1i red-dcvm segr,1,:::nts
and initialize page control and core control. Part 2
is the most critical part of the Multics Initialization
in the sense that it requires a large amount of core
memory. Therefore, after Part 1, all the core filled
by initialization routines that are no longer used is
returned and mad2 available for Part 2.

3. The third part., referred to as fiPart 3:i, is concerned v1ith
• • .._ • 1 • • • r .;. l T' ' r " 1n1L1a 1za~1on OT segmen~ contra . ne rest OT tne
hardcore supervisor, that need not be VJ red do\·m, is
loaded 5.n 11 virtual merwry11 mack:: avai1ab e in Part 2.

,,....

MULTICS SYSTEM-PROGRAMf:\ERS' M6.NLJAL SECTION BL.5.00 PAGE 5

4. In the last part, referred to as Part 4, the rest of
the I/0 system, the fault interceptor, and the traffic
controller are initialized. Block and wakeup are
enabled and the Multics initializer ends by calling
the Multics system control procedure.

Various components of the MI .

1. Data bases. The .fol lowing data bases are used by the
Multics initializer during the whole initialization.

a. The Multics system tape ·(BL.1)

b. The Segment Loading table (BL.2)

c. The descriptor segment (Described in
BL.4.01)

d. The system configuration table (BL.3)

2. Modu1es. The Hultics initializer contains the follovving
modules:

a. Initializer control module

b. Segment loader module

c. Initialization linkage module

d. 1/0 system initializer module

e. Fault-interrupt initializer module

f. File system initializer module

(BL.5.01)

(BL.6)

(BL. 7)

(BL.8)

(BL.9)

(BL.10)

g. Traffic controller initializer module (BL.11)

h. System configuration table generator module (BL.3)

i. Interim fault interceptor module (BL. 5. 02)

Each of these modules may consist of one or several segments.

A brief description of each data base and each module
is given be l rn,v, to get the reader fami l ia i- v.ri th them,
so that he will not need to perform a dynamic linkage
each time an inter MSPM sect5.on reference is made in the
rest of the BL sections. .· ·

MULTI CS SYS TEM-PROGRAMHERS ' ML\NUA L SECT I ON 8 L. 5. 00

Multics system tape (BL.1 .01)

The Multics system tape (MST) contains al 1 information
that needs to be loaded during system initialization,
that is, configuration segments, supervisor segments,
initialization seg~ents and all segments needed by the
hierarchy reconstruction process. As a consequence of

PAG;... 6

the strategy explained above, the MST is read at several
distinct times; therefore it is organized into 11 col lections11 •

Each time a set of segments is to be loaded, 2 collections
are involved: the II loadl ists11 col lcction fo110vved by
the 11 library' 1 co112ction. The loadlists collection is
made up of several loadlists; each of them is a segment
and contains a group of segment names. Once a given loadlist
has been selected, it defines a specific set of segments
to be loaded from library collection.

In the overview BL. □ it was explained that with a given
configuration CONF(i) vvas associated a loadlist CONF.LL(i),
in the configuration loadlists collection, naming every
segment CONF.SEG(i,k) that had to be loaded from the
configuration library collection. Because of the strategy
taken in the MI, the configuration information is broken
up into 2 parts whi~h appear at two different places in
the f11lST; the first part is loaded at the very beginning
of the MI, while th2 loading of the rest is postponed
until paga control is available.

Therefore, the statement mc1.de in the ovc1·viev1 SL.O mentioned
above should be expanded as follows: 1r,1ith a given configuraU.on
CONF(i) are associated:

a. a loadlist CONF.LL.1(i) in the configuration part 1
loadlists collection 1 naming every segment CONF.SEG.1(iJk)
that has to be loaded from the configuration part 1
library collection.

b. a loadlist GONF~LL.2(i) in the configuration part 2
loadlists·collection, naming every segment CONF.SEG.2(iJk)
that has to be loaded from the configuration part 2
library collection. ·

The same remark is to be made with respect to the supervisor
segments. The supervisor segm~nts are not loaded in one
step but in three. With a given version SUP(j) of the
supervisor are associated:

a. a loadlist SUP.LL.1(i) in the supervisor part 1 loadlist
collection, naming every segment SUP.SEG.1(j,k) that
has to be loaded from the supervisor part 1 library
collection.

MULTICS SYSTEM-PROGRAMMERS" M~NUAL SECTION BL.5.00 P.L\G= 7

b. Same as (a) 1r-1i th 11 211 instead of 11 111 •

c. Same as (a) with II 311 instead of 11 111 •

s eC'rnent loadino table {BL.2.01)

The segment loading table (SLT) is a segrn:~nt consisting
of one entry for each segment created or loaded during
the system initialization. Entries are of fixed length
and are indexable by segment number. Each time a segment
is loaded from the j,tST an entry is created in the SLT,
defining the segment name(s), the path-name, the maximum
length, the current length, the access rights, etc. The
information needed by the MI to manufacture an entry in
the S LT is recorded on the MST in a II header11 vJh ich precedes
the segment.

The SLT is used intensively by the Multics Initializer
for various purposes: \r.Jhen a segment is loaded, the information
needed to build the segment descriptor v.1ord and the page
table is found in the SLT; when a linkage fault occurs,
the SLT is used to find out the segment numbers of the
referenced segm~nt and its associated linkage section;
during the file system initialization the status of the
s.egmsnt (vJircd-dovm., loaded., active, normal) and the path
name used to create a branch in the hierarchy, are dravm
from the SLT; information needed to combine the hardcore
supervisor 1 inkage section segm2nts 5.s taken by the 11 pre-1 inker11

from the SLT, etc.

p es c r}_pt OJ~ s egm'2 ri t
The descriptor segmsn'c used by the MI is paged; as described
in BL. □, hardcore supervisor segments are assigned segment
numbers from Oto n-1 while initialization segments are
given segment numbers from n to 2n-1. The value chosen
for n is 2048. When a segment is to be loaded from the
MST, the 11 headerl! is first read, and the SLT entry is
built, thus assigning a segment number to the segment.
Then the MI re2.c.is the segm2nt from the MST and moves it,
word by word, into the segment. When the first word is
requested to be moved into the segment, a missing segment
fault occurs; control goes to the interim segfault handler
which builds the segment descriptor word at the appropriate
location within the descriptor segment and with the appropriate
access right bits, using the SLT entry.

System confi_quration tables (1_3_j.__~.G1)

The system conf guration tables are made up of three tables,
each of them be ng a separate segment:

MULTICS SYSTEM-PROGRAM:V-1ERS' 1--¼~JUt' :. S ECTU''-1 BL. 5. 00 PAGE 8

a. Major configuration table (MCT)., containing information
that is concerned with memory controllers and active
devices.

b. File system configuration table (FSCT)., containing
information pertaining to each secondary storage device
accessible to the basic file system.

c. Device configuration table (OCT), conta5.ning information·
pertaining to each I/0 device used by the 1/0 system.

Since the OCT is~ very large segment and since only a
small part of it is needed to in5.tialize page control.,
the fol 10'.rJing attitude is taken \ivith respect to the system
configuration tables: The MCT., the FSTC and the portion
of the OCT that is needed to initialize page control are
manufactured in Part 1 of the MI; the rest of the OCT
wi 11 be manufactured in Part 3., the virtual memory being
available at this time.

MCT., FSCT and OCT are manufactured by the system configuration
table generator., which is one of the Multics initializer's
modules. MCT., FSCT and the first portion of OCT are built
using the configuration segments loaded in Part 1; the
rest of the OCT is bui 1t using the configuration segments ~
loaded in Part 3.

Initializer control module (BL..5.01)

The Initializer control module contains only one segment,
the nar.ie of vJhich is 11 initializer control 11 • It consists
of a sequence of calls to the other Multics initializer
modules and contains the whole logic of the MI; the modules
that it calls and the order in which they are called is.
such that., after each cal 1 (or group of cal ls) a ne~l'J Multics
facility is made available, which expands the MI 's environment
until it becomes a normal process. The initializer control
is called by the bootstrap initializer and calls in turn~
the Multics system procedure at the end of the Multics
initializer.

Segment- loader module (BL.~)

This module contains the fol lovving segments:

segment_loader

tape_reader

(BL.5.01)

(BL. 5. 02)

r MULTICS SYSTEM-P~~OGRAMMERS" MANUAL SECTlv1\J BL.5.00

interim1_pagefault

interim1_segfault

core_manager

slt_manager

(8 L. 5. 03)

(BL. 5. 03)

(BL. 5. 03)

(8 L. 2. 02)

PAGE 9

1. Segm2nt_loader. It is called by the initializer control
program v1hen segm2nts have to be loaded from the r1ST.

2. Tape_reader. It contains 2 entries:

a. tape reader$tape_reader is called by the segment
loader which requests to move a given number of
logical words into core starting at a given location.
This tape reader is responsible for issuing connects
GIOC VJhile the GIM is not init5.alized .. VJhen the

b.

GIM is ready, the tape reader has to use it to
issue a connect.

tape_reader$use_g5.rn is cal led by the in5.tial 5.zer
control program to tell the tape reader that the
GIM is initialized and has to be used for connect
operations.

· 3. interim1_pagefault. It is called by the interim fault
interceptor when a missing page fault occurs; it assigns
a hyperpage to the segment in which the page fault occurred.
It will be used unt5.l the Multics missing page fault
handler is available, at the end of Part 2.

4. interim1_segfault. It is called by the interim fault
interceptor when a missing segment fault occurs. rt
assigns a page table and a segment descriptor \,\/Ord to
the missing segment. It will be used until the
interim2 segment fault handler (which is compatible
with the Multics page fault handler) is provided, at
the end of Part 2.

5. Core __ manager. 1 t contains 3 entries and the interim
core map.

a. Core __ manager ~ ass5.gn_core is cal led by interirn1_page
fault and interim1_segfau1t.

MULTICS SYSTEM-PROGRAMMERS" M~NUi.\L SECTION BL.5.00 PAGE 10

b. Core __ manager $ update_core_rnap is cal led by the
initializer control program to tell the core
manager that the configuration is knovm and that
the core map has to be revised accordingly.

c. Core_rnanager $ free_core is called by the initializer
control program at the end of Part 1 to return the
core occupied by all initialization segments that
are no longer needed.

d. Core_man2ger $ core_m2::1p

6. slt_manag?.r. It is a util:i.ty routine used by the
segment_loader to maintain the SLT, and used also by
other procedures to get information from the SLT.

1.nitialization 15.nka9e module (BL.7)

It contains 3 segments:

1 inker

pre_linker

datmk_

(BL.7 .01).

(BL. 7. 02)

(BL. 7. 03)

1. Linker. This segment is used for 2 purposes:

a. To establish the dynamic linkage .bet1r1een the various
Multics initializer segments. \J,Jhen used for this
purpose it is called by the interim fault interceptor.

b. To change linkage faults into correct machine.
addresses, in the hardcore supervisor linkage
sections. When used for this purpose it is called
by the pre-linker.

Th is 1i nker is not the Multi cs linker because it has to
request the segment number of the reference seg~ent from
the SLT manager. In BL sections., this linker is referred
to as the II initialization llnker11 •

2. Pre-linker. This segment is called by the initializer
control program to combine and prelink the hardcore
supervisor linkage sections. It calls the initialization
linker.

MULTI CS SYS TEM-PRCGRAHf-i[RS " fv\l\NU/\ L SECTION BL.5.00

3. Oatmk_. It is a segment grovJet· procedure used in the
implementation of PL/I static stora~e. It is cal led
by the initialization linker when it recognizes a
11 trap before 1 ink11 • l f the referenced segment does

0 • ' d ,. 1 L • t • r th 1 • I -'- • not ex1sr, aLmK creates 1 -; 1r e 1n~age sec~1on
of the referenced segment does not exist, datmk
creates a linkage section; if the referenced symbol
is not in the linkage section, datmk places the
external symbol definition in the linkage section.
Then it returns to the initialization linker.

1/0 ~vstem initializer mgdule (BL.8)

This module consists of 2 segments:

io_in1t_1 (BL.8.01)

i o __ i n i t_2 (BL. 8. 02)

1. io _ _init_1 is c:::11 led by the in5.tializer control program
during Part 1 of MI.- It initial5.zes the GIM and its data
bases so that the GIM can accept calls by the file system
initializer to write on disc, and calls by the tape
reader to read the Multics system tape.

2. io_init_2 is called by the in5.tializer control program
during Part 4 of MI. It initializes the tape controller
interface module (TCIM) and its data bases.

It contains 2 seoments: ...,

fault_in5.t (BL.9.01)

interrupt_init (BL.9.02)

1. fault init has two entries called by the initializer
cont ro 1 prog 1~am during Part I+ of the MI •

a. fault_init $ one initializes the fault interceptor

b. fault_init $ two initializes the fault vector so
that it transfers control to the fault interceptor
when a fault occurs; that is, this call operates
the svvi tch5.ng from the interim fault i.ntercep\:or
to the Multics fault interceptor.

r

MULTICS SYSTEM-PROGRAMMERS~ ~AA~JUAL SECTION BL.5.00 PAGt. 12

2. interrupt_init has two entries called by the initializer
control program.

a. interrupt_init $ one is called in Part 1 and
initializes the interrupt interceptor

b. interrupt_init $ two is cal led in Part 1 ancl
initializes the interrupt vector in its final
form so that, upon completion of an I/0 operation
for the MST, the drum or the discs, the interrupt
interceptor will be entered.

File system initializer module (BL.10)

It contains 5 segments that are called by the initializer
control program:

fs init 1 (BL.10.01) - -
fs - init _2 (BL. 10. 02)

fs - init -3 (BL.10.03)

fs " "t L (BL. 1 0 • OL~) - 1 n1 _ ~

f s_vJi ndup (BL. 10. 04)

1. fs init 1 is cal led in Part 1 after the GIM and the
interrupt interceptor have been initialized. It initj_alizes
all secondary storage devices used by the file system,
if the hierarchy must be reloaded. It also initializes
some of the data bases used by the file system: Device
disposition table (DDT), empty active segment table
(AST), empty descriptor segment table (DST), empty
process segment table (PST), empty core map, empty
1ivired-dovm process v1aiting table, 1/0 queues and all
device interface modules (DIM).

2. fs_init _ _2 is cal led in [?art 2, after all the 1.:Jired-do1:m
supervisor segments have been loaded and pre-linked.
It init5.alizes page control, core control and core map.
Furthermore it provides the MI with an interim segment
fault handler (interim2_segfa.ult) v1hich performs th2
functions required by page control to be able to work
properly while segment control is not available yet.

Before segment control is available, all existing
segments must be kept 11 act5.ve 11 •

,,..

MULTICS SYSTEM-PROGRAMMERS' M!:\NUt' __ S ECTI (",! BL. 5. 00 PAGE 13

3. fs init 3 is called in Part 3 after all the hardcore
supervisor modules have been loaded and pre-linked.
It creates a branch in the file system hierarchy for
each existing segment (hardcore supervisor and
initialization segments), initializes segment control
and the rest of the basic file system.

4. fs init 4 is called in Part 4 after the interim fault
interceptor has been told, by the initializer control
program, to call the Multics segment fault handler
when a missing segment fault occurs. A certain number
of segments were kept 11 active11 just to al lov1 page
control to vJork \tJi th out segment co~t ro l . Now I the
Multics missing segment fault handler is operational;
therefore fs init 4 reduces the AST entrv-hold count
by one for each segment \\/hose status is ,·, norma 111 •

Then, if the hierarchy must be reloaded, fs._init_4
loads from the MST all the segments needed by the
hierarchy reconstruction ·process.

5. fs_1tJindup is called in Part 4 before the MI ends by
cal ling Multics system control. fs_windup returns a 11
core wh5.ch is currently wired-dm,m in the behalf of the
Multics initializer.

_Traffic controller initializer module (BL.11)

The traffic controller initializer is made of 1 segment
tc_init. It is called by the initializer control program
in Part 4.

The procedure tc_init creates, for the MI, the per-process
information used by the traffic controller: an entry
in the kno,\/n process table (KPT), an entry in the active
process table (APT), a process data block; then it creates
the system data bases used by process creation: template
descriptor segment, stack history; it creates the necessary
system processes: file system device monitor process
and one idle process for each processor. Then it enables
block and wakeup.

Svst?m confj _ _guraU.on table generator module (Bl .3.02)

It contains 3 segments:

mct_generator

fset_generator

dct_generator

r
MULTICS SYSTEM-PROGRAMMERS~ MEI.NUt'. SECTI 0 1\1 BL.5.00 PAGE 14

They are responsible for translating the configuration
segments (loaded from the configuration library collections)
from symbolic form to binary form, in the formats required
by the major configuration table (MCT), the file system
configuration table (FSCT) and the device configuration
table (OCT).

Interim fault interceQtor module (BL.5.02)

It consists of 1 segment with three entries

interirn_fi $ interim_fi

interim_fi ~ use_mode_2

interim_fi $ use_mode_3

The interim fault interceptor is given control when a
missing page fault, missing segment fault and a linkage
fault occur. On a linkage fault, the interim fault interceptor
ah01ays calls the initialization linker; on the other hand,
on a missing page or segment fault, it may have to call
different segments depending on where the initialization
stands. That is why it runs under 3 different modes:

Mode 1 • the handlers are: interim1_pagefau1t and
interim1_segfault

Mode 2. the handlers are: (multics) ,. 1 . page·:·au 1: and
interirn2 _segfault

Mode 3. the handlers are: (multics) pagefault and
(mu 1 tics) segfault

At the beginning of the MI, the interim fault interceptor
runs under Mode 1; when page control is initialized, the
initializer control program cal ls the entry interim_fi
$ use_mode_2, vvhich causes the interim fi to s\,Ji tch to
mode 2; where segment control is initialized, a call from
the initializer control program to interirn_f5. $used_mode_3
causes the interim fi to switch to mode 3.

Initial environment of the MI

The Multics initializer is given control by the bootstrap
initializer by:

call <initializer_control>l[initializer_contn)l]

MULTICS SYSTEM-PROGRAMMERS' M·4NUAL S EC TI Of~ 8 L • 5 • 0 0 PA.G:_ 15

The initial environment of the MI is as follows:

1. All the Multics initializer's modules are not in core
\•Jhen this call is issued. Only a fevJ of them have
been loaded and initialized by the bootstrap initializer,
so that the Multics initializer can run properly.
These segm2nts are (see Figure 1):

descriptor segment

ini_tial izer _control

segrnent_loader

tape_reader

mailbox

physical_record_buffer

slt_manager

slt

fault_vector

interim1_pagefault

interim1_segfault

core manacer - ...;

1• I (' 't' 1' '• l' I) 1n~er 1111 1a 1zat1on 1n~er

pds (process data segment)

stack_O

stop

Other segments will be loaded by the segment loader when
requested by the initializer control program to do so.

r
MULTICS SYSTEM-PROGRAMMERS' MANU.L' '. SECTI('"-1 BL.5.00 PAGE 16

2.

3.

4.

5.

6.

7.

The interim fault interceptor runs under mode 1 (see
BL.5.02), that is: when a missing page fault occurs,
interim1_pagefault allocates a hyperpage; when a

. . tf lt '1 .r: 1 tb·1· m1ssJ.ng segmen au · occurs, 1nt..er1m _seg,au, u1 as
a segment descriptor word and a page table for the
missing segment; when a linkage fault occurs, the
initialization linker changes the fault pair into a
correct machine address; timer runout fault and connect
fault are ignored (the interim fault interceptor merely
restores the control unit).

Interrupts coming from the boatload GIOC through status
channels Oto 11 are directed to <tape_reader>l[interrupt].

All other faults or interrupts are directed to the
segment stop, which causes the initialization to stop.

The phys ica 1 record buffer is in it ia 1 ized in such a VJay
that the next logical word of the MST that 1,,vi 11 be
delivered by the tape reader is the first word of
collection 2 (collection 2 contains the loadlists for
the first part of the configuration).

The SLT contains one entry for each existing segment.

All the calls use the hardcore stack.

r
MULTICS SYSTEM-PROGRAMMERS- MANUL\' S ECTI (1i\\

Descrip-
tor

Segment

Expected
Fault-

Vect o\<$
Q

l-1.R .-·

J~! ~
Inter-

Vect --

0<"
(')Q>

~

8---

ootstrap
Initial­

izer

------- ---

interim
FI

~

Tape
Reader

Segment
Loader

Initializer
Control

BL.5.00

Interiml
Page Faul

Interiml
Segfault

Initializ-
ation

Linker
I
I

f

I

I

I

0
I

I

SLT
Manager

F iq11re 1: J.nit5.al enviroml2'.}t of Multics In5.t:1.aliz2r

Fl~GE 17

