MULTICS SYSTEM=PROGRAMMERS © MANUAL SECTICN BL.5.0O PAGE 1
ished: 04/28/67

-o
o

o
—
—te

“Qverview of the pdMultics Initializer
A, Bensoussan

Purpose

The Multics Initializer (MI) is given control by the Boot strap
Initializer (BL.L4); its main purpose is to load and init wa!iz
the hairdcore supervisor and to create the fTirst Multics
process. The Multics Initializer then transfers control

to the Multics System Control in which the establishment

of Multics operation is completed by creating varicus

system service processes,

The basic functions that have to be performed by the MI

have been listed in BL.O. As was saild in BL.O, the different
functions of the MI are not executed in the order they

are described there., A diff erch approach nas been taken
wnicn is explained and]L Tifd in this section, Then

itiec
a general description of each ddLa hasz and componen’
of the Multics initializer is proviced.

.

fte

%trate gy of the Multics Initializer

-1t miGhL appear possible to pc:TOsi the various Tunctions
2 MI in such a way that each of them wou1u be Independent
of Ln otner, The MI would bz a simple GEELS program,
e beginning to the end, initializing one thing
, until all functions are done, and saying
moment: '"MNow I Multics process
the Multics facilities available to
7 di

i

n

at the very 1
[se i it

his method has lsadvantages:

e S.D
Y]

any prC¢ss”‘

1. It would require a large amount of special purpese code
to perform funciions that can be done automatically
by the hardcore supervisor moduies provided that they
be called after their nesdad envirormént has been
established.

2. It would reguire a large amount of core mamory since
all the hardcoic suparvisor segments that have to Le
onlv loaded or active when Multics i ODETE 11nﬂ would
have to bz in core at the same time during the évecution
A

of the Mi. Because of the actual size orf thc hardcore
superviser, the above consideration is a sufficient
reason for not taking this aporcach,

(u 0.

MULTICS SYSTEM-PROGRAMMERS * MANUAL - SECTION BL.5.00 FAGE

N2

Therefore, the ?o!iowing method has bean taken: The
starts as a normal GEBHS progiram; this program can be
regarded as an "undzsr-developad' Multics process that
has a primitive environmznt, as far as the Fau]tninterrupi
handlers and 1/0 capabilities are concerned, But this
program has the following characteristic: It reads t
information recorded on the MST in several steps

time it reads a set of information, it applies t
apprepriate transformation to change the tape i i
into a Muiltics facx?ity; then it decides that this faci
belongs to it and uses it, so increasing its power 1itt
by 1ittle, until it has established the environment exp
by any Multics process,

. 2

The MI contains a main program which issues calls to various
entries in Multics initializer’s modules, The function
performed by each entry and the order in which they are
called are such that each of them makes available to the
MI some Multics procedures that can be used by the next
entries as if the MI were a process, even if it is not
yet.
In particular, the problem of core memory space 1lim
encounLered in the First method is solved by deing
page control” and "core control’ as soon as possibl
and by u;xng them to load the rest of the hardcore sup
even if ' S°g,ont controi' is not availabkle yet (Initi
also segment control without using the paging mechani
would require a larger amount of core),
Basically, the idea is the following: The
page fault handler can operate without the
control provi' >d that the page bezlongs to a
that is, the pago table word which causes t
a pointer to the Active S»gment Table (AST)
to the Descriptor Segment Table (DST) entry
belongs to a descriptor segment).

192]
e
—

.
(VRS
b

o E
[4) R
ck-h VT ot

S SR e

~h N
w5

o R
N ve

X
D
N W
e i D

3‘3 pn)
e (D (D i
D

QO Owvxw

T =00
<.’
®

=S5 O VD

~
O

he

o
&
el
[

Therefore, after having initialized the secondary storage
used by the Tile system, the DIM7s, the GIM and the interrupt
handling mechanism, the Multics Initializer loads and
pre~tinks all the wired-down qupervisvr seginents, Then,

an AST entry is created for each existing segment wnich

is neither a wired-cdown sunprv%s r osegment nor a descripior

L
-
segment, and a DST eﬂLry is created for the MI“s des criptor
ngmcnt- a ter to tne AST or DST entry is plﬁcec in

the Sean¥n:’Load1ng Table (SLT) entry. Fcna]ny the core

MULTICS ¢ STEM=-PROTPAMMERS 7 MANUAL SECTICN BL.5.00 PAGE 3

map is initialized. The interim fault interceptor is

told to direct missing page faults to the Multics page
fault handler, and missing segment faults to a special
purpose segment fault handler (interim2_segfault), the
role of which is explained below,

From this point on, the remainder of the hardcore supervisor
can be loaded in the "virtual memory'" provided by the
.file system, using the following mechanism: When a segme
is to be loaded, at the Tirst reference, a missing segmazn
fault occurs; control is given to the interim?_segtault
handler mentioned above, This handler, looking in the
SLT, determires if the segment is a normal segment or

a descriptor segment; it bullds an AST (or DST) entry

for this segment, using the information in the SLT, and
places a pointer to the created AST (or DST) entry in

the SLT entry. Then it calls a primitive in page control
to get a hyperpage for the page table (the hyperpage size
is found in the SLT entry), it places a pointer to the
AST (or DST) entry in each page table word, manufactures
a segment descriptor word using the SLT entry information
and returns. When a page of the segmznt is referenced
for the first time, a missing page fault occurs, that

can be handled properly by the Multics page fault handler.

If sometime later, the segment is unloaded and then referenced
again, the interim2_segfault handler builds a new page

table and the AST (or DST) pointer is copied from the

SLT entry to each page table word.

nt
&£
[%

It should be noted that only page retirieval is possible

at this point; segment retrieval is not, since none of

the segments that have been loaded from the MST has a
branch in the file system hierarchy yet. This implies

that, before the Multics segment fault handler is available,
none of the lcadad segments can be deactivated. This

is guaranteed by setting the necessary '"hold-~switches"

in the AST entries,

The other advantage of this strategy is to be able to

use some ot the hardcore supeirvisor modules to perform

some of the initialization functions. The best example

that can be given is the example of page and core control

that are used bv the Multics Initializer as soon as they

are available, as explained above, Othei examples can

Ee given: The GIM and the interrupt intercepter are initialized
and are added to the facilities available to the MI for

drum, disc and tape I/0; like page control, ssgment control

will be initialized and used by the MI; branches can b2

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BL.5.00 PAC. &

/

created in the file system hierarchy using Tile system
routines; the traffic controller routine "create KPT!

is called by the MI to create an eniry for itself in the
Known Process Table, the process creation module is called
by the Ml in order to manufacture the "stack history"
which is a process creation data base, etc.

A fundamzntal remark has to be made as far as the behavior
of the process exchange during initialization is concerned:
The MI uses the file system routines to read from and
write on secondary storage. The file system, in turn

uses the Multics mechanism to wait for an I/0 operation,
Thus entries "block" and "wakeup" in the process exchange
will be exercised, t 1s obvious that if the MI calls
block betore the traffic controller is initialized, or

it the drum interrupt handier pretends to send a wakeup

to the file system drum manager process before it is created,
one can expect the worst catastrophies to occur,

Therefore, modules "block" and “"wakeup" are disabled during
the most part of MI; that is, they m:rply pertorm a return,
They will be enabled at the appropriate point of the MI
when the traffic controller initialization is completed,

The Multics Initializer’s strategy is implemented in b
fuwcLlona1 parts:

1. The first part, referred to as "Part 1", makes known
the hardware configuration, loads a few moduies of tne
harcacore supyrv"sor (mawn1y the GIM, the interrupt
interceptor, the interrupt handlers and the DIrocess
exchange) nzeded for 1/0 operations, init 131&2@q the
secondary storage devices if the Tile system hierarcny
has been destroved, and initializes a DIM for eac
secondary storagzs device available to the file system,

2, The main purpose of the second part, re Fcrrcd to as
"Part 2", is to load the rest of the wired-down segmants
and initialize page control and core control, Part 2
is the most critical part of the Multics Tthia}?zat'o*
in the sense that it requires a large amount of core
memory. Therefore, after Part 1, all the core filled
by initialization routines that are no longer used Is
retuirned and mads available Tor Part 2,

3. Tre third part, referred to as "“"Part 3”, is concerned wi
initialization of segment control. The rest of the '
hardcore supervisor, that need not be wiruo down, is
loaded in "virtual rwmory“ made avaiizble in Part 2.

i

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BL.5.00 PAGE 5

b, In the last part, referred to as Part L, the rest of
the 1/0 system, the fault interceptor, and the traffic
controller are initialized. Block and wakeup are
enabled and the Multics initializer ends by calling
the Multics system control procedure,

Various components of the MI

1. Data bases. The following data bases are used by the
Multics initializer during the whole initialization.

a. The Multics system tape “(BL.1)

b. The Segment Loading table (BL.2)

c. The descriptor segment (Described in
BL.L,0T)

d’, The system configuration table (BL.3)

2. Moduies., The Multics initializer contains the following
modules:

a. Initializer control module (BL.5.01)
b. Segment loader module (BL.6&)
c. Initialization linkage module (BL.7)
d. 1/0 system initializer module (BL.8)

e. Fault-interrupt initializer moduie (BL.9)

=

. File systiem initializer module (BL.10)

g. Traffic controller initializer module (BL.11)

h. System configuration table generator module (BL.3)
i, Interim fault interceptor module (BL.5.02)

Each of these modules may consist of one or several segments.
A brizf description of each data base and each module

is given below, to get the reader familiar with them,

so that he will not need to perform a dynamic linkage

each time an inter MSPM section reference is made in the
rest of the BL sections. ’ '

MULTTLS SYSTEM-PROGRAMMERS © MANUAL SECTION BL.5.00 PACL ©

Multics system tape (BL.1.071)

The Multics system tape (MST) contains all information

that nezsds to be loaded during system initialization,

that is, conficuration segments, supervisor segments,
initialization segment ts and all segments needed by the
hierarchy reconstruction process. As a consequence of

the strategy explained above, the MST is read at several
distinct times; therefore it is organized into '"collections'.
Each time a set of segments is to be loaded, 2 collectlions
are involved: the "loadlists" collection £01lowed by

the "1library" collzsction. The loadlists collecticn is

made up of several loadliists; each of them is a segment

and contains a group of segment names. Once a given loadlist
has been selected, it defines a specific set of segmants

to be loaded from library coliection.

In the overview BL.,0 it was explained that with a given
configuration CONF(i) was associated a loadlist CONF.LL(i),
in the configuration loadlists co]]nction, naming every
segment CONF SEG<1,A> that had to be loaded from the
conxtgurat1on 13 br“"y collection. Because of the strategy
taken in the M, the configuration information is broken
up into 2 parts "which appear at two different places in
the MST; the first part is loaded at the very beginning

of the MI, while the loading of the rest is postponed
until page control is available,

Therefore, the statement made in the ovciview BL.0O mentioned
above should be expanded as follows: with a given configuraticn
F(i) are associated:

a. a loadlist CONF.LL,1(i) in the configuration part 1
loadlists collection, naming every segment CONF,SEG.1(1,k)
that has to be loaded from the configuration part 1
library collection,

b. a loadlist CONF.LL.2(1) in the configuration part 2
loadlists collection, naming every oegmoﬂt CONF .SEG.2(1,Kk)
that has to be .oadpu from the cow.1ouraLwon part
lTibrary collection.

N

The same remark is to ke made with respasct to the supervisor

segments. The supervisor segments are not loaded in one

step but in three. With a given version SUP(j) of the

supervisor are associated:

a. a loadlist SUP.LL.1(1) in the supervisor part 1 loadlist
collection, naming every segment SUP.SEG.T1(Jj,k) that
nas to be loaded Trom thne supervisor part 1 library
collection.

MULTICS SYSTEM-PROGRAMMERS © MANUAL — SECTION BL.5.00 PAGL 7

b. Same as (a) with "2" instead of " 1"
c. Same as (a) with "3 instead of "1".

Secment loadina table (BL.2.01)

The segment loading table (SLT) is a segmant consisting

of one entry for each segmznt created or loaded during

the system initialization. E&ntries are of fixed length

and are indexable by segment number, Each timz a segment
is loaded from the MST an entry is created in the SLT
defining the segment namz(s), the path-name, the maximum
length, the current length, the access rights, etc. The
information neeced by the MI to manufacture an entry in

the SLT is recorded on the MST in a "header' which precedes
the segment.

The SLT is used intensively by the Multics Initializer

tor various purposes: Vhen a segment is loaded, the information
needed to build the segment descriptor word and the page
table is found in the SLT when a llnmage fault occurs,

the SLT is used to find out the segmant numpers of the
reterenced secmant and its associated linkage section;
during the file system initialization the status of the
segmnent (wired-down, loaded, active, normal) and the path
namz used to create a branch in the hierarchy, are drawn
from the SLT; information reedad to combine the hardcere
supzrvisor]1nLaoe section segmants is taken by the '"pre-linker"
from the SLT, etc,

Descrintor seam=2nt

The deacr'pxor segment used by the MI is paged; as described
in BL.O, hardcore cﬂpcrvxcor ocgments are ESG'CﬁOd segma
numbers from 0O to n-i ”ﬂ’]c initialization segments are

given segment numbers from n to 2n-1, The vaiue chosen
for n is 20u48. When a segment is to be loaded from the
MST, the header" is first read, and the SLT entry 1
built, thus assigning a segment "number to the seg gmen
Then the MI reads tne segment from the MST and moves it
word by word, into the segm;nt. wWhen the first word is
requestec to be moved into the segme nL, a missing segment
fault occurs; control gees to the interim seg! Fault handler
whxch builas the segment descriptor word at the appropriate
location within tho deschptur segment and with the approp.1ate
access right bits, using the SLT entry. .

.

System confiquration tablas (BL.32.01)

The system conftig

G made up of three tables,
each of them bein T

LQC

MULTICS SYSTEM=-PROGRAMMERS © MANUA SECTIMM BL,5,00 PAGE &

a. Major configuration table (MCT), containing information
that is concerned with memory controllers and active
devices.,

b. File system configuration table (FSCT), containing
information pertaining to each secondary storage device
accessible to the basic file system,

c. Device configuraticn table (DCT), containing information’
pertaining to each 1/0 device used by the 1/0 system,

Since the DCT is a very large segment and since only a
small part of it is needed to initialize page control,

the following attitudzs is taken with respect to the system
configuration tables: The MCT, the FSTC and the portion
of the DCT that is necded to initialize page control are
manutfactured in Part 1 of the MI; the rest of the DCT

will be manutactured in Part 3, the virtual memory being
available at this time,

MCT, FSCT and DCT are manufactured by the system configuration
table generator, wnich is one of the iMultics initializer’s
modules, MCT, FSCT and the first portion of DCT are built
using the configuration segments loaded in Part 1; the

rest ot the DCT 1Is built using the configuration segments
toaded in Part 3,

“Initializer control mocdule (BL.5.01)

The Initializer control moduie contains only one segment,
the name of which is Y"initializer_control"., 1t consists
oF a sequence of calls to the other Multics initializer
medules and contains the whole logic of the MI; the modules
that it calls and the order in which they are called is .

such that, after each call (or group of calls) a new Multics
facility is made available, which expands the MI s environment
until it becomes a normal process, The initializer control

is called by the bootstrap initializer and calls in turn,

the Multics system preocedure at the end of the Muiltics
initializer.

Segment loader module (BL.5)

This module contains the following segments:
segment_loader (BL.5.01)

tape_reader (BL.5.02)

MULTICS SYSTEM~PROGRAMMERS © MANUAL SECTIuwn BL.5,00 PAGE ©

interimi_pagefault (BL.5.03)
interimi_segfault ‘ (BL.5.03)
core_manager (BL.5.03)
s1t_manager (BL.2.02)

Segment_loader. 1t is called by the initializer control
program when segments have to be loaded from the MST.

Tape_reader. It contains 2 entries:

a. tape reader{tape_reader is called by the segment
loader which requests to move a given number of
logical words into core starting at a given location.
This tape reader is responsible for issuing connects
GIOC while the GIM is not initialized.. When the
GIM is ready, the tape reader has to use it to
issue a connect.

b. tape_readerduse_gim is called by the initializer
control program to tell the tape reader that the
GIil is initialized and has to be used for connect
operations,

interiml_pagefault. It is called by the interim fault
interceptor when a missing page Tault occurs; it assigns
a hyperpage to the segment in wnich the page fault occurred,
It will be used until the Multics missing page fTault
handler is available, at the end of Part 2.
interimi_segfault. It is called by the interim fault
interceptor when a missing segment fault occurs. It
assigns a pagzs table and a segment descriptor word to
the missing segment. 1t will be used until the

interim2 segment fault handler (which is compatible

with the Multics page fault handler) is provided, at

the end of Part 2.

Core_manager. It contains 3 entries and the interim
core map.

a. Core_manager § assign_core is called by interiml_page
fault and interimi_segfault,

’F~ MULTICS SYSTEM~PROGRAMMERS © MANUAL SECTION BL.5,00 PAGE 10

b. Core_manager § update_core_map is called by the
initializer control program to tell the core
manager that the configuration is known and that
the core map has to be revised accordingly.

c. Core_mznager § free_core is called by the initializer
control program at the end of Part 1 to return the
core occupied by all initialization segments that
are no longer needed,

d. Core_manager § core_map
6. s 1t_managar It is a utility routine used by the

segment_loadar to maintain the SLT, and used also by
aur

2
other procecures to get information from the SLT,

Initialization linkaaz module (RL.7)

It contains 3 segments:

linker (BL.7.01)
r pre_linker (BL.7.02)
datmi_ (BL.7.03)

1. Linker., This segment is used for 2 purpocses:
a. To establisn the dynamic linkage between the various
Multics initializer segments, Wwhen used for this
purpcse it is called by the interim fault interceptor.

b. To change linkage faults into correct machine .
addresses, in the hardcore suparvisor linkage
sections. When used for this purpose it is called
by the pre-linker,.

This linker is not the Multics linker because it has to
request the segment number of the reference segment Trom
the SLT manager. In BL sections, this linker is referred
to as the "initialization linker",

2, Pre-Tinker., This segment 1s called by the initializer
control program to combine and prelink the hardcore
supervisor linkage sections, It calls tne initialization
Tinker.

MULTICS SYSTEM-PRCGRAMMERS © MANUAL SECTION BL.5.00 PAGCC i1

3. Datmk_. It is a segment grower procedure used in the
1mplomonLWt1on of PL/I static storage It is called
by the initialization linker when it recognizes a
"trap before link". 1f the referenced segment does
not exist, datmk creates it; if the linkage section
of the referenced segment doe s not exist, datmk
creates a linkage section; if the referenced symbol
is not in the linkage section, datmk places the
external JyTbo] definition in the linkage section.
Then it returns to the initialization linker.

1/0 system initializer module (BL.8)

This module consists of 2 segments:
io_init_1 (BL.8.01)
fo_init_2 (BL.8.02)

1. io_init_1 is called by the initializer control program
during Part 1 of MI. 1t initializes the GIM and its data
bases so that the GIM can accept calls by the file system
initializer to write on disc, and calls by the tape
reader to read the Multics system tape.

2, ifo_init_2 is called by the initializer control program
during Part L of MI. It initializes the tape controller
intertace module (TCIM) and its data bases.

Fault-interrupt initializer nmodule (BL,9)

It contains 2 segments:
fault_init (BL.9.0T)
interrupt_init (BL.9.02)

1. fault_init has two entries called by the 1n1t1a1140r
control program during Part b of the MI,

a. fault_init § one initializes the fault interceptor

b. fault_init § two initializes the fault vector so
that it transfers control to the fault interceptor
when a fault occurs; that is, this call operates
the switching from the interim Tault interceptor
to the Multics Taultl interceptor.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BL.5.00 PAGE 12

2, interrupt_init has two entries called by the initializer
control program,

a. interrupt_init § one is called in Part 1 and
initializes the interrupt interceptor

b. interrupt_init § two is called in Part 1 and
initializes the interrupt vector in its final
form so that, upon completion of an I1/0 operation
for the MST, the drum or the discs, the interrupt
intercepter will be entered.

File system initializer module (BL.10)

It contains 5 segments that are called by the initializer
control program:

.

fs_init_1 (BL.10.01)
fs_init_2 (BL.10,02)
fs_init_3 (BL.10.03)
fs_init_u (BL.10.0W)
fs_windup (BL.10.04)

1. fs_init_ 1 is called in Part 1 after the GIM and the
interruot interceptor have been initialized. 1t initializes
all secondary storage devices used by the file system,
if the hierarchy must be reloaced, It also initializes
some of the data bases used by the file system: Device
disposition table (DDT), empty active segment table
(AST), empty descriptor segment table (DST), empty
process segment table (PST§, empily core map, empty
wired~down process waiting table, 1/0 cqueues and all
device interface modules (DIM).

2. fs_init_2 is called in Part 2, after all_the wired-coun
supervisor segments have been loaded and pre-linked.
It initializes page control, core control and core map,
Furthermore it provides the MI with an interim segment
fault handler (interim2_segfault) which performs the
functions required by page control to be able to work
properly while segmznt control is not available vet.

efore segment control is available, ali existing
egments must be kept "active',

MULTICS SYSTEM~PROGRAMMERS © MANUA. ~ SECTINNM BL,5,00 PAGE 13

3. fs_init_3 is called in Part 3 after all the hardcore
supervisor modules have bean loaded and pre-linked,
It creates a brancn in the file system hierarchy for
each existing segment (hardcore supzsrvisor and
initialization segments), initializes segment control
and the rest of the basic Tile system.

L, fs_init L is called in Part 4 after the interim fault
interceptor has been told, by the initializer control
program, to call the Multics segment fault handler
when a missing segment fault occurs. A certain number
of segments were kept "active" just to allow page
control to work without segment control, Now, the
Multics missing segment fault handler is operational;
therefore fs_init_L reduces the AST entry-hold count
by one for each segment whose status is "normal'.

s_init_L

Then, if the hierarchy must be reloaded, init_
by the

£~

[}
loads from the MST all the segments needed
hierarchy reconstruction process,

5. fs_windup is called in Part L4 before the MI ends by
calling Multics system control, fs_windup returns all
core which is currently wired-down in the behalf of the
Multics initializer.

Traffic controller initializer module (BL.11)

The traffic controller initializer is made of 1 secgment
tc_init, 1t is called by the initializer control program
in Part L,

The procedure tc_init creates, for the MI, the per-process
information used by the traffic controllzar: an entry

in the known process table (KPT), an entrv in the active
process table (APT), a process data block; then it creates
the system data bases used by process creation: template
descriptor segment, stack history; it creates the necessary
system processes: file system device monitor process

and one idie process for each processor, Then it enables
block and wakeup.

Svstem confiquration table generator module (BL.3.02)

1t contains 3 segments:

mct_generator

-h

set_generator

dct_generator

MULTICS SYSTEM-PROGRAMMERS © MANUA' SECTIAN BL,5,00 PAGE 14

They are responsible for translating the configuration
segmnents (loaded from the configuration library collections)
from symbolic form to binary form, in the formats reduired
by the major configuration table (MCT), the file system
configuration table (FSCT) and the device configuration
table (DCT).

Interim fault interceptor module (BL.5.02)

It consists of 1 segment with three entries

interim_fi § interim_fi

2l

interim

-—a

-

"1 § use_mode_2

interim_fi § use_mode_3

~

The interim fault interceptor is given control when a

missing page tault, missing segment fault and a linkage

fault occur. On a linkage fault, the interim fault interceptor
always calls the initialization linker; cn the other hand,

on a missing page or segment fault, it may have to call
different segments depending on where the initialization
stands, That is why it runs under 3 different modes:

Mode 1. the handlers are: interiml_pagefault and
‘ interiml_segfault

Mode 2, the handlers are: (multics) pagefault and
interim2_segtault

Mode 3. the handlers are: (multics) pagefault and
(multics) segfault

At the beginning of the MI, the interim fault interceptor
runs under Mode 1; when page control is initiailized, the
initializer control program calls the entry interim_fi

§ use_mode_2, which causes the interim fi to switch to
mode 2; wnere segmant control is initialized, a call from
the initializer control program to interim_fi Jused_mode_3
causes the interim +i to switch to mode 3.

Initial environment of the MI

The Multics initializer is given contreol by the bootstrap
initializer by:

call <initializer_control>|[initializer_control]

MULTICS SYSTEM-PROGRAMMERS © MANUAL

Th

10

n
rm

—
Ul

TION BL.5.00 PAGL

initial environmant of the MI is as Tollows:
A11 the Multics initializer’s modules are not in core
when this call is issued, Only a few of them have
been loaded and initialized by the bootstrap initializer,
so that the Multics initializer can run propzarily.
These segments are (see Figure 1):

descriptor segment

initializer _control

segment_loader

tape_reader

mallbox

physical_record_butfer

s 1t_manager

st

fault_vector

L
I

interim_f1

interiml_pagefault
interimi_segfault

core_manager

linker (initialization linker)

pds (process data segmznt)

t loader when

Other segirents will be loaded by the segmen
rogram to do so.

requesteo by the initializer contro] P

MULTICS SYSTEM-PROGRAMMERS © MANUA . SECTI”M BL.,5.00 PAGE 16

2.

The interim fault interceptor runs under mode 1 (see
BL.5.02), that is: when a missing page fault occurs,
interimi_pagefault alloccates a hyperpage; when &
missing segment fault. occurs, interimi_segfault builcs
a segment descriptor word and a page table for the
missing segment; when a linkage fauit occurs, the
initializatlion linker changes the fault pair into a
correct machine address; timer runout fault and connect
fault are ignored (the interim fault interceptor merely
restores the control unit).

Interrupts coming from the bootload GIOC through status
channels 0 to 11 are directed to <taps_reader>|[interrunt].
A11 other faults or interrupts are directed to ti

.

segment stop, which causes the initialization to stop.

Tne physical record buffer is initialized in such a way
that the next logical word of the MST that will be
delivered by the tape reader is the first word of
collection 2 (collection 2 contains the loadlists for
the first part of the configuration).

The SLT contains one entry for each existing segment,

A1l the calls use the hardcore stack.

MULTICS SYSTEM-PRCGRAMMERS © MANUA'

Descrip-
tor
Segment

Expected

| Faults

Fault-~
Vect

Inter-
Vect

Physical
Record
Buffer

o

interim
FI

1ssing
egment

SECTION'BL.5.C0

Interiml
Page Faulg

PAGE 17

Tape
Reader

Interiml
Segfault

Core
Manager

Initializ~-
ation

Linker

I
|
I
!
1
|
|

SLT
Manager

Segment
Loader
Bootstrap,
Initial- e e g
jzer Initializer
Control
Ficure 1: Initial environmen® of Multics Initializer

