
0

0

TO: MSPM Distribution
FROM: M~ A~ Padlipsky
SUBJ:. BL.11
DATE s 02 /2 7/ 68

· The attached revision of BL.11 reflects the actual implementation
of the Traffic Controller Initializer.

MULTICS SYSTEM-PROGRAMMERS' l'¼NUAL SECTION BL. 11

Identification

Traffic Controller·Initializer
R. L. Rappaport, G. Benjafield

Purpose

Published:
(Supersedes; BL.11,

PAGE 1

02/27 /68
04/24/67)

This section provides the specification of the Traffic
Controller Initializer which is called by the Initializer
Control Program (see Section BL.5.01). The basic goal
of this initializer is to initialize the data bases associated
with the Process Exchange and the Process Creation modules
and to ini tia 1 ize· the hardware processors of the systemo
This section assumes a thorough knowledge of the Process
Exchange, the process creation machinery, and the Multics
Initializer.

Introduction

At the time the Traffic Controller Initializer is invoked, the
system is in the following state:

1. All hardware processors, except the one on which the
Initializer is executing, are in a disconnected state.
That is, they are executing the DIS (Delay until Interrupt
Signal) instruction.

2. The Multics Initializer, as far as the Process Exchange is
concerned, is not yet a pr(?Cess. ·

3. The block and wakeup entries to the Process Exchange are
disabled. That is, the two data switches block_enable
~nd wakeup_enable, which reside in segment tc_data are off.

4. The qrain switch (see Section BJ.6) in the Processor data
segment being t,sed by the Initializer is .Q!l. This switch
effectively disables ·timer-runout interrupts.

S. The Active Process Table is not initialized.

6. The Process Creation datq b~ses have not been initialized.
These data bases are the template segments used in creating
and loading processes. ·

7. The File System Device Monitor process has not yet been
created.

B. The Basic File system has been initialized.

MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BL.11 PAGE 2

The goal of the Traffic Controller initializer is to negate
the first seven statements above. Before discussing the
overall strategy of the Traffic Controller initializer,
some of the problems involved in the tasks outlined above
are presented.

First, there are two reasons why block and wakeup are disabled
at this time.

1. During file system initialization, both entries are called.
Since, from the vantage point of the Process Exchange, the
initializer is not yet a process, these calls must be
diverted. This is accomplished by disabling the entries.

2. The second reason for disabling the entries is that the
File System Device Monitor process has not yet been created.
In order for paging to work without this process, block
must be disabled ar1d an alternate procedure must be executed
every time block is cal led (see Section BL.5.,O4).

Description

The calling sequence for the Traffic Controller initializer
is simply:

ca 11 tG_ini tJ

The steps taken by tc_inlt are as follows:

, .

2.

3.

The Active Process Table (APT) ls initialized. That is,
the entries are cleared and a thread is built linking all
the entries into the "empty list".

Several subroutines are cal led to initial lze various data
bases. They are:

a) apt hash$lnlt (see BJ.7.O2)
b) buiTd_template_dseg (see BL.11.O4)
c) build_template_pds (see BL.11.O5)
d) bulld template_pdf (see BL.11.O6)
e) get_proc_ld$in1t (see BJ.7.O3)

The names of these subroutines imply their functions.

The initializer process ls made to resemble a process from
~he vantage point of the Traffic Controller. That is, an
APT entry is allocated for this process and initialized
(by cal ling the interna 1 procedure a 1 loc_apt entry). The
process ls defined to be running on the BootToad processor.

. '

MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION BL.11 PAGE 3

4.

Other items initialized in this entry are the process_id
(obtained from pds~processid)., the process segment tab 1 c.~
entry pointer (obtained from pds~pstep), and the segment
descriptor word (SDW) for this process descriptor segment
(obtained from the current descriptor segment).

An idle process is created and initialized for each dist.inc ..
processor in the system. The fol lowing paragraph
describes how these idle processes are createCt 1r.d
initialized. Note that the idle process for thr Bo,,tl:.'"K~
processor is handled in a slightly different manner i 1 ·.ii,

the others.

The descriptor segments and process data segment·;; for id le
pro~esses are created by calling the system
initialization procedure create_hardcore_proc. While
a processor .data segment need not be created fo· 1he
Boot load processor., one must be created for eacr1 or 't:h ..
other proces·sors and its SDW stored into the desc1·i 1:< -1

segment of the appropriate idle process. File system
subroutine make_seg is called to create the processor
data segment and create_hardcore_proc stores the soi.,:.
APT entries are a 1 located for each idle process ar--l
initialized; these APT entries indicate that they wi 1,
only run on the processors with which they are associat~d.
While the Bootload idle process is initialized to be in
the blocked state., the othe.r idle processes are
initialized to the running state.

After this step the APT indicates that each processor is
executing. On the bootload processor., the APT indicates
that the initializer process is executin~ while each
other processor appears to be executing its own idle pr,)cess.
In reality only the boatload processor is running at
this point.

s. The drain switch (prds~drain_switch) is set to zero. This
enables timer-runout interrupts to be effective.

6. The File System Device Monitor (FSDM) process is created
as are the idle pro:esses by calling create_hardcore_
proc. Once this process has been created and initialized.,
Traffic Controller subroutine block can be enabled. (The
FSOM process itself sets the data item tc data~block enable
to 11 111 b at the appropriate time.) After Tnitializing the
APT entry of the FSDM process., the initializer process
sets tc_data~wakeup_enable to 11 111 b and calls wakeup for the
FSDM. As a result., the FSDM process is positioned at the
head of the ready l~st. ·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.11 PAGE 4

In order to give control of the Boatload processor to the
FSDM process, the initializer sends itself a timer-runout
interrupt (by cal Ung master_mode_ut$set_cel 1, see BK.5.04).
When the initializer regain$ control of the processor, it
tests the status of tc data$block enable. If this data item
is still zero (an indication that-the FSDM process is not
yet finished), the initializer interrupts itself again. It
remains in this interrupting and testing loop until the cata
item becomes equa 1 to "1" b.

7. Finally, the other processors in the system are initialized.
This is done by a ca 11 to ini t_processor (see BL.11.03) for
each processor. This procedure interrupts the appropriate
processor with the initialize interrupt which has the effect
of loading the descriptor segment base register of the
processor with the sdw of the descriptor segment of the
appropriate idle proce~s and transferring to an initialize
entry in ini t_processor.

At this point, tc_init returns to its caller.

....

	Scan 21.PDF
	bl-11.680227.traffic-controller-initializer.pdf

