MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BL.10.02 PAGE 1
Pub]ished: ou/z2u/67

Identitication

This section provides the specification of the procedures
which perform the second part of file system initialization.
These procedures run under the control of the Multics
initialization control program during the second part

of Multics initialization. The main purpose of this part

of the file system initialization is to initialize that
portion of the file system necessary for dynamic memory
allocation, Once this part of the file system is initialized,
the remaining segments of the hardcore supervisor can

be loaded into a "virtual memory" provided by the file
system,

Introduction

When the Multics initialization control program passes
control to the second part of the Tile system initializer,
the system is iIn the following state.

1. A1l of the wired-down segments of the hardcore supeirvisor
: have been loaded and all external segment references .
have been prelinked. These segments inciude all of the
segments necessary to process a missing-page fault (e.g.
page control, core control, file system DIMs).

2. An interim fault interceptor has been prov d.
pro”edurc will call the Multics procedure ggg;ﬁauLffS——

handle missing- paoe faults and will call an interim
procedure f & L to handle missing- segme1c
fauits. %M
File System Initializ
At the appropriate point during the second part of initializa
the Multics initializer makes the following call to initializ
the file system,.

call fs_init_2;

Upon receiving this call, the following steps are taken
to initialize the file sy:tﬁm dynamic paging mechanism,

MULTICS SYSTEM~-PROGRAMMERS © MANUAL SECTION BL.10.02 PAGE 2

Step 1

The necessary AST, DST and PST entries are added fo the
system segment tables (SST) by means of the following
call. ,

call update_sst;

This procedure creates a DST entry for the hardcore descriptor
segment using the current descriptor segment as described

in the segment loading table (SLT). Each unused entry

in the descriptor segment’s page table is set to point

to this new DST entry. The necessary software switches

are then set in all of the page table words for the descriptor
segment., '

Next, a PST entry is created for the Multics initializer
(which will eventually become the first Multics process)

and this new PST entry is linked to the newly created

DST entry. The unique identifiers and AST pointers to

the initializer’s per-process segments (i.e, the KST,
hardcore stack, process definitions segment and process

data segment) are initialized to zero since this information
is not yet available. A relative pointer to the newly
created PST entry is then placed in the process data segment
(referenced as segment "pds"),

Finally, AST entries are created for each segment listed

in the segment loading table (SLT) except for the wired

down segmants of the hardcore supervisor for which the
per-process switches are OFF., Pointers to these AST entries
are then placed back in the SLT with the related SLT entries.
Certain items for these newly created AST entries cannot

yet be providad and must be set to zero. The following

is a 1list of these items.

1. The unique segment identifier (id)

2. Pointer to AST entry for parent directory segment
(astparent)

3. Index of branch in parent directory (xbranch)

I, Active meter tabile index (amtindex)

MULTICS SYSTEM-PROGRAMMERS = MANUAL SECTION BL.10.02 . PAGE 3

. e

The active file trailer (AFT) for the new AST entry must
have the device identification set for the first available
device listed in the file system device configuration
table and the Tile length and file pointer items set to
zero, This action will ultimately cause the segment to

be written on the device specified by the AFT,

The software switches in the page table words must be
set appropriately. Page table words for pages currently
in use are set to show that the page has been modified.
This action will ultimately cause a copy of the pags to
be written in secondary storage. Unused page table words
(marked with directed fault 0) are set to pcint to the
related AST entry. The segment status in the segment
loading table entry for the segment is than tested and
one of the following actions is taken,

1. If the segment status is wired (i.e. the segment must
remain wired down), the wired-down segment count is
set to "1",

2. If the segment status is lpadad (i.e. the page table
must remain in core), the page-table-hold count is set
to ll1ll .

3. If the segment status is active or narmal, the entry-hold
count is set to "1" and a call is made to the s=gment
control utility routine maketrailer to create a process
trailer for the AST entry,. ‘

2fep 2

o update the core map to indicate that
segments already loaded is assigaed,
e following initializatiop-pProcedure.

cal
This procedure Sx€ates core map entries for/all core ubed
by segments r than zero-length segmengs) listed i
the segmg ' , he informatign

and page tablz of each s ent, ~tntries for hypekpages
for/segments in wirad-down status Tust be set to indicat
that the hyperpage is wired down.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BL.10.02 PAGE L

Step Ao

Control is returned to the Multics initializer. The remainder
of the hardcore supervisor can now be loaded using the
~virtual memory provided by the file system missing-page

fault handler and the interim mxsslng segment fault handler
described be]ow

The Interim Fault Interceptor

o allow missing page and segment faults to be handled
wiNle the remainder of the hardcore supervisor is being
loaded and initialized, an interim fault interceptegr is
initiayized by the Multics initialization contro program,
This falNt interceptor responds only to missing/page and
segment fawlts (i.e. directed fault 0).

Upon receiving s directed fault 0, the inyérim fault interceptor
processes the fau in the same mannsr 38 the normal fault
interceptor (sees BK) with the followihg exceptions.

1. Since much of the MIN{ics profjgction ring mechanism
has not yet been loaded\or itialized, all faults are
assumed to have occured I Afing O. (At this stage of
system initialization ripgd 8 is the only ring.)

2., The interim fault intgfceptor calNs the interim segment
fault handler (see b€low) to procedg missing segment
faults,

Note: missing-segmefit Taults are a?ways procedged by calling
the segment/fault handler after sthchwng o the ring O
pageable gtack (i.e. "hardcore_stack") unless\the fault
occuredAinile referencing this stack. If a sedwent fault
occurg/as a result of a reference to the normal Nng O
stacl, the call to the segment fault handler must be made
usifdg the process concealed stack which is always
wited-down,

The Interim Seament Fault Handler

The innarim segment fault handler is provided to handle

miss an egment faults while the remainder of the hardcore
sup’rv sor (including the regular segment fault hand]er)

is being loaded and initialized. During part 3 of file

system initialization there is a short period of time

(from step 6 to step 10) in which both the interim and

normal segment fault handlers must be operational. Therefore,

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BL.10,02 PAGE

the interim segment fault handler must determine which
segment faults it should handle and which should be passed
on to the normal segment fault handler. Segment faults
for segments having corresponding entries in the segment
loading table (SLT) are processed by the interim segment
fault handler wnhile segment faults for segments not listed
in the SLT must bz passed on to the normal segment fault
handler,

When a missing-segment fault is encountered by the interim
fault interceptor, the following call is made to the interim
segment fault handler. .
‘ BTV PR L &
e (scuptr, e, ringno, ow=im,
errcode);

call i

The paramzters used in this call are the same as describe
for the normail segment fault handler segfault (sees BG.3.1
However, the ringno parameter is guaranteed to be zero
during system initializaticn and may be ignored by the
interim segment fault handler.

d
).

Upon receiving this call, a check is made to determinc

if the missing segment has a corresponding SLT entry.

If no SLT entry exists for this segment, the seagment fault
is passed to the normal segment handler by calling the
segfault primitive of segment control,

If an entry exists in the SLT for the missing segment,

the SLT entry may contain a pointer to a previously created
AST entry for the missing segment., If no AST entry yet
exists for the segment, a new AST entry is created as
described in step 1 and a pointer to the new AST entry

is placed in the corresponding SLT entry for the missing
segment.

Once the AST entry for the segment is found (or created

if necessary) a call is made to a page control primitive
(getloaded) to provide a page table for the missing secment,
Upon return from page control, the page table address

in the AST entry is combined with other information in

the AST and SLT entries for the segment to make up a segment
descriptor word. This segment descriptor word is placed

in the appropriate lccation of the descriptor segment

and control is retuirned to the fault interceptor.

