MULTICS SYSTEM-PROGRAMMERS = MANUAL SECTION BL.10.01 PAGE 1
Published: 0OL/2u/67
Identification

File System Initialization (Part 1)
R. C. Daley

Burnose

This section provides the specification of the procedures
which perform the first part of file system initialization.
These procedures run under the control of the Multics
initialization control program during the first part of
Multics initialization. The main purpose of this part

of file system initialization is to initialize all secondary
storage devices used by the file system and to initialize
some of the data bases used by the file system. After
these initialization procedures have beesn run, they may

be deleted allowing the storage to be reused by the second
part of Multics initialization.

Introduciion

When the Multics initialization control program pass=as
control to the first part of the file system initializer,
the system 1s in the following state,

1. Some of the segments of the hardcore supervisor have
. been loaded and all of their external seament referencss
have been prelinked.

2. The GIOC interface module (GIM) and its data bases has
been initialized and is available for use by the Tile
system.

3. The system interrupt interceptor and interruont handlers
for drum and GIOC interrupts have been initialized.

L, Dummy versions of the traffic controller procedures
"block" and "wakeup" have been provided,

Eile Svstem Tnitialization

At the appropriate point during the first part of system

initialization, the Multics 1n1L1alxza110n control program

makes the 7ol lowi ng call to initialize the Tile system,
call fs_init_1;

Upon recelving this call, the following steps are taken
to initialize the file svstcu

MULTICS SYSTEM~-PROGRAMMERS © MANUAL SECTICN BL.10.01 PAGE 2

Step 1

To initialize all secondary storage devices available
to the file system, control is passed to an initialization
procedure by means of the following call,

call initialize_devices;

1f the file system hierarchy has been destroved or must

be reloaded, this procedure calls the define_device entry
of the device utility package (see BG.17) to re-initialize
each secondary storage device (e.g. prepare free storage
maps, etc.).

Step 2

To define the areas of secondary storage to be used by
the version of Multics currently being initialized a call
is made to the following initialization procedure,

call define_partitions;

This procedure makes successive calls to the get_status
entry of the device utility package to obtain the file
pointer and current length of the root directory and the
macster hyperrecord addresses (see BG.17) defining the
areas of secondary storage to be used by this version

of Multics. This information is placed in the file system
device configuration table (see section BL.10.0Lk) for

use during parts 2 and 3 of file system initialization,

Step 3

The file system device disposition table (DDT) is initialized
by issuing the following call.

call initialize_ddt;
This procedure initializes the DDT from information in
the file system device configuration table and presets
the multilevel criteria parameters (see section BH.1).
Step L

The file system device interface modules (DIMs) are initialized
by means of the following call. L

call initialize_fs_dims;

MULTICS SYSTEM=-PROGRAMMERS ©~ MANUAL SECTION BL.10.01 PAGE 3

This procedure first initializes the 1/0 queues which
are common to all DIMs and then proceeds to initialize

a DIM for each secondary storage device available to the
file system., The initialization of a file system DIM
includes the following steps.

1. The master hyperrecord is read into core to obtain the
device hyperrecord size and the record addresses of the
free storage maps. (The address of the master hyperrecord
has previously been stored in the file system device
configuration table during step 2)

2. The deposition and withdrawal buffers are initialized
by reading in the appropriate records of the free storage
maps. '

3. The DIM history table is initialized along with other
DIM dependent data bases.

Step 5

The system segment tables (SST) consisting of the active
segment table (AST) and descriptor segment table (DST)
and the process segment table (PST) are initialized by
means of the following call,

call initialize_sst;

This procedure initializes the SST free storage area and
allocates an AST hash table. Each entry in this hash

table is set with the vacant switch ON o indicate an

empty AST, Upon return from this call the SST is initialized
but contains no AST, DST cor PST entries,

sfep 6

he file system core map is inj
ollowing call.

cgnfiguratign
marked as abl d ent] i d
2rked as avallable and cuFrently unassigned.

core is

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BL.10.01 PAGE L

Step k’

The wired-down process waiting table (PWT) is initialized
by means of the following call.

call initialize_pwtYwired_pwt;

This procedure initializes the wired-down PWT to appear
as empty (i.e. no processes waiting).

Step

Zero lenagth segments are loaded during initialization

for the sole purpose of reserving segment descriptors

for specific uses by the hardcore supervisor. To set

up some of these segment descriptors to point to specific
segnents, a call is made to the following initialization
procedure,

call update_descriptors;

This procedure sets the descriptor words of the zero length
segments "hardcore_ds" and "current_ds" to point to the
current descriptor segment. The descriptor word for the
current process data segment '"pds" is set to point to

the segmznt loaded by the name "process_data". (During
normal Multics operation, the segment descriptor for '"pds'
‘points to an interim process data sagment if the process

is being loaded and points to the real process data segment
(i.e. gprocess_data”) while the process is in the loaded
state,

Ste

Control is returned to the Multics initializer. The above

initialization procedures are no longer needed and may
be deleted.

