
T01
FROM1
SUBJ1
DATE1

MSPM Distribution
J. H. Saltzer
BK.3.01-03 and BK.3.06
10/02/67

Sections BK.3.01 6 02. 03 and 06 are revl.sed here. The
main change ls that the Fault Interceptor Module handles
process faults by issuing a signal, rather than by calling
a user fault handler. The fault_stack is also added.
a mechanism found necessary to implement wall-crossing
faults.

MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BK.3.01 PAGE 1

Pub 1 l shed a 10/02/67
(Supersedes, BK.3.01, 09/13/66)

ldentiflGption

Overview of Fault Handling
Chester Jones

Discussion

A filill, by Multics definition, ls a condition (such as
accumulator overflow) detected within the processor hardware
which causes that processor to depart from the procedure
it was executing. Conditions which cause faults are not
necessarily error conditions. For example, a program
reference to an area not currently in core memory causes
a "missing-page" fau 1 t.

Faults occurlng in the Multics system are divided into
two mutually exclusive categories, named fYatem.and e5ecess.
System faults include those faults which n lcate har are
or software failures and other faults which require system-wide
fault handling strategies. System faults may occur at
any time, regardless of which user process has control
of the processor. [They may not, ln general, be considered
to be ''programmed" by the running process.] The memory
parity fault, the illegal descriptor fault, and the directed
faults are examples of system faults. Process faults,
on the .other hand, always occur as a consequence of some
action in the running process. Overflow, derail, and
fault tag 2 (linkage fault) are examples of process faults.
MSPM Section BK.3.02 contains a complete breakdown of
the GE-645 faults into system and process fault categories.

The basic philosophies for handling system and process
faults are quite different. The underlying philosophy
of handling system faults is that they are the responslblllty
of the operating system; they are handled on a system-wide
basis. Their handling must be invisible to the user process.
Certain of the system faults have reserved meanings In
Multics. For example., directed fault O ls reserved to
indicate a missing page or segment; the connect fault
ls reserved to mean uclear your associative memory."
Such reserved system faults are viewed as calls orlglnatlng
in the processor hardware to "hidden" modules of the operating
system. The role of the fault handling routines is to
transform system faults into "automatic" calls to the
appropriate Multics modules to handle the faults.

The underlying philosophy of handling process faults ls
that they are the responsibility of the user process;
they are handled on a per-process basis. Multics contains

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.01 PAGE 2

a standard procedure for handling each fault. However,
there Is at least one point in each process fault handling
procedure where control may pass to some other procedure
in the process If that process is administratively entitled
to provide alternative handling for that fault. Process
faults are viewed as signals similar In nature to condition
signals but originating in the processor hardware (see
MSPM Section BD.9.04). The fault handling mechanism for
process faults has been subsumed under the condition handling
mechanism in Multics. Thus, the role of the fault handling
routines ls to transform process faults into appropriate
condition signals •

.Im! faylt Interceptor Module

All faults are passed directly to the Fault Interceptor
Module by a transfer instruction in the processor fault
vector. This transfer Instruction ls set up at system
lnltlalizatlon or reconfiguration time. The Fault Interceptor
Module ls a standard Multics procedure segment, except
for Its unorthodox method of entry. It operates in master
mode, but not In absolute mode.

Conceptually, the Fault Interceptor Module Is quite simple.
lt saves the processor state in a safe place and calls
the appropriate handler to service the fault. The handler,
a standard Multics procedure, performs the appropriate
action, modifies the machine conditions (if necessary),
and returns control to the FIM, which restores the processor
state and returns control to the point at which the fault
occurred.

Actually, the Fault Interceptor Module ls slightly more
complex than as described above in order to satisfy the
following requirements.

1 • Fault identification. Not all faults recognized by
the GE-645 processor hardware have unique meanings in
Multics. For example, directed fault O may indicate a
missing page, a missing segment, or an out of bounds
reference depending on the situation In which It occurs.
The illegal procedure fault may Indicate an Illegal
Instruction! Improper use of a privileged Instruction,
an access v olation (which~ be an outward wall
crossing attempt in some Instances), or an out-of-bounds
reference (which !!lil!, be one of the software simulated
faults -- see MSPM Section BB.S.03). Therefore, before
it can call the handler to service a fault generated by
the hardware, the FIM must first Identify the fault
1n order to determine which handler is "appropriate".

MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BK.3.01 PAGE 3

Ring switching. While system faults may occur at any
time in any protection ring of a process procedures
for handling system faults may not be ca11ed from outside
the hardcore ring. Therefore, In order to maintain the
illusion that system faults are invisible to the user
process, the FIM must switch to the hardcore ring before
it calls system fault handling procedures and switch back
to the original ring before returning control to the
faulting procedure. In addition, conditions associated
with certain of the process faults must be handled in
specific rings regardless of where they occur. For
example, fault, tag 2 (linkage fault) must be handled
ln the administrative ring whenever it occurs. So, in
addition to its responsibility for calling the appropriate
fault handling procedures, the FIM ls responsible for
first switching to the appropriate protection ring.

Stack management. Associated with each process in Multics
is a (large) number of call stacks (see MSPM Section
BD.9.xx) having a wide variety of protection modes. Since
faults may occur at any time! in any protection ring of a
process there ls no a prior way of knowing which call
stack will be in use when a fault occurs. Several points
shoul~ be noted. First, the FIM must save the machine
conditions on a push-down 11st since "cascaded' faults'
may cause the FIM to be entered recursively. Second,
many of the fault handling procedures must modify the
machine conditions before returning control to the FIM.
Therefore, the machine conditions must be stored in a
stack that ls (write) accessible to the fault handling.
procedure. Finally, not all fault handling procedures
will ·return control to the FIM; the machine conditions
cannot be stored in a "wired-down" stack. The FIM-s
responsibility, then ls to insure that the stack used

. to call a fault handling procedure is accessible to that
procedure and that stack is in a consistent state when
the fault handling procedure is called.

Supervisor protection. Since the machine conditions
associated with a fault are write-accessible to the
fault handling procedure, that'procedure maI freely
modify the machine conditions before return ng control
to the FIM. In many cases, the machine conditions must
be modified by the fault handling procedure and the FIM
must use the modified copy to restore the processor state.
The machine conditions may be modified so that, when
the FIM restores the processor state, the system protection
mechanism (MSPM Section BD.9) is vio1ated. To prevent
this the FIM must make a new copy of the now-changed
machine conditions in a safe place and carefully examine
that copy to check the validity of the modifications made
by the fault handling procedure.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.O1 PAGE 4

In order to tentatively identify a particular hardware
fault that is, in order to satisfy the first requirement
the FfM contains a list which relates hardware fault conditions
to faults expected by Multics. The list contains an entry
for each fault condition (or subcondition) that can occur.
An entry in the list indicates whether the fault is a
system fault or a process fault. For process faults,
the entry includes the condition name associated with
the fault and the ring number in which the condition is
to be signaled. For system faults, the entry indicates
which Multics module is to receive control upon occurrence
of the corresponding system fault. Following a hardware
fault, the FIM uses information captured by the hardware
to determine which entry in the list to use. Once tentative
identification is made! the FIM performs the necessary
stack management and r ng switching for that fault and
calls the appropriate handler. In ambiguous cases, the
FIM assumes the fault is a system fault performs the
usual system fault housekeeping, and ca11s the system
fault handler. If the handler returns an error code meaning
the fault was 11 encountered in a non-standard situation,"
then the FIM "un-does" the system fault housekeeping and
treats the fault now or a process fault by signalling
corresponding condition.

In order to perform its ring switching duties, that is,
in order to satisfy the se~ond requirement, the FIM must
be accessible in every ring of every process and it must
be able to switch rings when necessary. Since the ring
mechanism for supervisor protection is implemented by
using a different descriptor segment for each ring, the
basic mechanism for switching rings is the (privileged)
''load descriptor base reglste~• instruction. This Instruction
and associated housekeeping are contained in a privileged
Basic File System procedure, ring$1oad (MSPM Section BG.3.O5).
In order to abandon one ring in favor of another the
FIM issues a standard call to ring$1oad. Contro1 returns
to the FIM in the new ring. Following a wall-crossing
fault, normal ring switching ls performed in two steps.
First, the Gatekeeper (MSPM Section BD.9.O4) executing
within the hardcore ring, performs the housekeeping (including
stack switching) necessary for a "formal" wall crossing.
Second. the FIM calls ring$1oad to switch to the descriptor
segment for the target ring. It is important to note

• that the wal 1-crossing fault is a system fault 1 the Gatekeeper
· can only be cal led from inside the hardcore ring. (Clearly,

a call to the Gatekeeper must not produce a wall-crossing
fault.) Before it calls the Gatekeeper. the FIM must
first call rlng$1oad to switch to the hardcore ring.

MJLTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BK.3.01 PAGE 5

The FIM-s stack management duties following a fault depend
on whether the fault ls a system fault or a process fault.
Following a process fault# the FIM calls signal (MSPM
Section 8D.9.04) to indicate the occurrence of the corresponding
condition. However# before it can call signalt the FIM
must first set up a new stack frame In the cal, stack
for the ring in which the condition ls to be signalled.
This new stack ,frame# called a 11 placeholder" frame (see
Figure 1)# contains a copy of the machine conditions at
the instant a fault occurred. (This step In stack management
is also taken by the Gatekeeper when lt switches stacks.
(See also MSPM Section BD.9.01.) Following a system fault#
the FIM switches to a special paged stack (named fault_stack)
before calling the system fault handling procedure. In
order to understand the use of fault stack# consider the
steps taken fol lowing a legitimate attempt to enter the
hardcore ring. First# a processc executing In some ring
other than the hardcore ring# ca1ls a valid entry point
to the hardcore ring causing a wall-crossing fault.
Since the wall-crossing fault is a system fault# the FIM
switches to the hardcore ring (using ring$1oad) and tries
to call the Gatekeeper to handle the fault. The FIM cannot
use the standard paged stack for the hardcore ring In
order to call the Gatekeeper since the Gatekeeper will
insert a "placeholder'' frame in that stack in preparation
for switching to it. The FIM cannot use the wired-down
Process Concealed Stack (MSPM Section BJ.1·.04?) to cal 1
the Gatekeeper because the Gatekeeper may get missing-page
faults. Therefore, the FIM uses a third stack the
fault_stack# to maKe the call.

Following a process fault# the FIM makes a copy of the
machine conditions In the "placeholder" frame of the call
stack to be used as requl red by the fault handling procedure.
A slightly more complete overview of the FIM may now be
given.

When a Multics processor generates a fault# control passes
automatically to the FIM which executes as part of the
process that ls running at the time of the fault. While
executing within the ring in which the fault occurs the
FIM safe-stores the processor state in the Process Concealed
Stack (Section BJ.1.05) that belongs to the running process
and makes space available for safe-storing the processor
state should another fault or interrupt occur. Then.
the actions taken by the FIM vary# depending on the probable
cause of the fault. For missing-page faults# the fault
interceptor switches to the hardcore ring and uses the
Process Concealed Stack to call the Basic File System
(Section BG) to supply the missing page. For other system

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.01 PAGE 6

faults, the fault interceptor switches to the hard core
ring copies the safe-stored processor state from the Process
Concealed Stack into the fault_stack that belongs to the
running process, and calls the appropriate procedure for
handling the fault. For process faults, the FIM consults
Its list of faults to determine the numoer of the ring
in which the associated condition ls to be signalled and
calls the Gatekeeper to switch rings if necessary. Then,
the FIM bul lds a "placeholder" stack frame in the call
stack and deposits copies of the machine conditions in
the "placeholder" frame. Finally, the FIM calls signal
to report the occurrence of that condition.* If, and
when, control returns from the fault handling procedure,
the fault interceptor checks the validity of the processor
state, restores the processor state, and returns control
to the point at which the fault occurred.

c1tastroohe Module
The catastrophe module (Section BK.3.04) performs the
initial handling of system faults that indicate either
an appending hardware malfunction or some possibly fatal
error in the operating system. For example, foll011ing
an illegal descriptor fault, the catastrophe module checks
the validity of the descriptor for the fault interceptor
before transferring control to the fault interceptor.

The catastrophe module is an absolute mode module that can
be entered .2..D.!:t_ as a result of a hardware error condition.

*To avoid the need to prelink a path through the signal
procedure to the linker, the FIM makes a special core of
fault-tag 2 by calling the linker directly instead of

. signa 11 ing. No loss of general! ty occurs., for a process
could not replace its linker by such a simple Technique
as setting a new on-condition anyway -- since dynamically
set on-conditions depend on having a linker available to
operate properly when signalling occurs.

sp

sp

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BK.3.01 PAGE 7

,

•

machine
conditions

machine
conditions

signal

condition
handler

Stack frame for faulting procedure

"GRACE SPACE" inserted by FIM to avoid
possible overlap of previous frame

"PLACE HOLDER" frame used as stack frame by FIM

Stack frame for faulting procedure

"PLACE HOLDER" frame
(stack frame for FIM)

Stack frame for SIGNAL procedure

Stack frame for fault handler

Figure 1

