
)- MULTICS SYSTf:M ... PROGRAMMERS' Ml\NUAL SECTION BJ. 7 .03 PAGE 1

Published: 06/16/67

Identification

Process Id Generator
J. J. Donovan

Purpose

Process id generator is a procedure in Process Control.
Process id returns a unique identifier that may be assigned
to a newly created process.

Discussion

The purpose of process id generator is to return to its
caller a unique identifier. We have imposed the following
constraints on the unique identifier. These constraints
are arbitrary and were chosen to facilitate the implementation
of process id in Multics.

The first constr~int is that the unique identifier produced
by process id is a 36 bit word. A 36 bit word was chosen
because the read ... alter-rewrite system controller interface
for the GE.600 series operates on a 36 bit word. Instructions
based on this interface are used for interlocking data#
and the process id makes a good interlock word.

A 36 bit reading of the 52 bit calendar clock will be
used to initialize the series of unique identifiers produced
by process id generator. A clock reading was chosen because
it is sequentual and if the system should go down merely
taking a new clock reading wi 11 result in initializing
a series of ids which have not been used before.

The problem with using a 52 bit clock reading is that
the 52 bit reading must be reduced to 36 bits to initialize
the series of process ids. Process id generator does
this reduction by masking. However# a trade off results.
Masking off the high order bits of the clock results in
a period# a number of hours# after which the 36 bit
configuration will repeat. Masking of the low order bits
results in a lower limit# a minimum time interval# in
which time all 36 bit configurations are the same. We
have made a compromise. Five of the high order bits and
eleven of the low order bits will be masked. The implication
of this choice of masking is that we are assuming that
the life time of a process in Multics is not over four
years# and that the system will not be creating processes
faster than every two milliseconds. (See a future section
on the clock for a table of alternate compromises.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.7.O3

I mp lementat ion

Process id generator will be called by the following:

· ca 11 get_proc_id (id);

In this call the argument id is the returned unique id.
The PL/I declaration of theparameter used in the call
is:

de 1 id bi t (3 6) ;

Process id will have a system-wide data base consisting

PAGE 2

of two words, an interlock word and a data word containing
the last process id created. Process id must lock its
data base while using it.

Process id is initialized by reading the clock. Process
id, written in EPLBSA, will use an

reel <clock>fO,*

to read clock. The clock reading will appear in the AQ
right justified. Process id constructs a 36 bit word
from this 72 bit configuration by masking off the first
25 bits and the last 11 bits.

After initializing the first process id subsequent ids
will be created by simply adding one to the value of the
last id created.

Process id will compare the most recent id created to
the present clock reading. If they are equal process
id will repeat the test over and over until the clock
advances enough that the test succeeds. If the value
of the id is less than the value of the clock the value
of the id will be returned to the caller of process id.
In this manner process id will ensure that the process
id is never a larger value than the clock. If the system
goes down a new series of process ids is initialized by
readin~ the clock. Members of this new series of process
id's will be different from any old process id since the
process ids have never gotten ahead of the clock. To
initialize the series of process ids, the entry point

call get_proc_id~init;

is ca 1 led.

