
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.02 PAGE 1

Identification

Pre-emption

Published: 10/01/68
(Supersedes: BJ.5.02, 03/24/67)

Robert L. Rappaport, Michael J. Spier

Purpose

As mentioned in section BJ.5.00, a running process may
be interrupted and made to ~ive its processor to a ready
process which has a high-priority level number. We name
this kind of interrupt a 'pre-emption' interrupt and say
that the running process has been pre-empted in behalf
of the higher-priority ready process.

This section describes the implementation of pre-emption
in Multicso

Introduction

The generalized rule for pre-emption is as follows:

When a process is put on top of the ready list, if
its level number is of higher-priority than the level
number of a currently-running process, and if that
process has run for at least as long as the high­
priority process intends to run then the running
process is pre-empted.

The scheduler (see BJ.5.01) computes the time allotment
as a function of the process' current priority; the lesser
the priority, the larger the time-allotment. A running
process is pre-empted only if it has already run for at
least as long as the higher-priority process' time allotment.

This is in order to insure that a low-priority process
will never get into a situation where it spends most of
its process-time thrashing around between the ready-state
and pre-emption.

However, it is rather expensive to determine, whenever
some process is put on the ready-list, what the priority
of al 1 the currently-running processes is, and how much
is left of their time-allotment (one might have to stop
them all and look into their timer-registers in order
to .detemine that).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.02 PAGE 2

For reasons of efficiency, a less generalized technique
has been adopted which permits pre-emption to be carried
out ,3t discrete points of time only, but which can be
implemented without too much overhead. In Multics, the
timer-runout is a software-generated interrupt; the flipping
over of the timer register actually causes a hardware
fault which is intercepted by the Fault Interceptor (FIM).
The FIM sets the processor's timer runout interrupt cel 1
to "on", thus converting a fault into an interrupt.

The Traffic Controller takes advantage of this mechanism.
Instead of loading a process' integral time-allotment
into the timer registers, it loads only a 'time-quantum'
into that register. A time-quantum is a system-constant,
and corresponds to the amount of time during which a process
is allowed to run without risking pre-emption (atypical
time-quantum could be 2 seconds). A process' time~allotment
is thus used up in a series of time-quanta, and the timer-runout
interrupt normally occurs when the last time-quantum of
this current time-allotment has been exhausted. The FIM
keeps count of the number of time-quanta that a process•
has used, and it also knows the number of time-quanta

'-

that any other process intends to run. So whenever a
running process• gets a ti mer-runout fau 1 t because its ,-.,,I
time-quantum has been used up, it 9oes into the FIM and
there looks to see whether or not 1t still has time-quanta
left. If not, i.t sends itself a timer~runout interrupt.
If it does have time left, it checks to see whether or
not the process on top of the ready-list has a higher-priority
level number. If it does, and if that process intends
to run for a number of time-quanta which is equal to or
less than the number of time-quanta this process has already
used up, then it pre-empts itself by sending itself a
pre-emption interrupt. Else it loads a fresh time-quantum
into its timer register and resumes its interrupted execution.

This scheme works fine for most processes. HCMever, certain
system processes cannot tolerate to wait for one whole
time-quantum to pass before pre-emption becomes effective.
Such system processes as the Device Manager Process or
the File System Device Manager or the Traffic Controller
System process, which all have the system .. s highest-priority
level number (level 1, which no user'process can ever
have), must be able to instantaneously pre-empt any other
running process. In order to emphasize this point, let
us assume that a Tape Drive Device Manager does not have
special powers of pre-emption. On a heavily-loaded system
it would then conceivably read a magnetic tape at the
speed of one record per time-quantum, which is rather
slow.

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BJ.5.02 PAGE 3

On the other hand, all these level-1 processes are known
to perform very fast computations, and are guaranteed
to keep the processor for very short periods of time only.
Therefore, whenever a level-1 process is put qn the ready-list,
the lowest-priority non-level-1 process on the running-list
is automatically pre-empted, without regard to the number
of time-quanta that it has used up.

We name the level-1 pre-emption "system pre-emption" and
the non level-1 "user pre-emption''.

System Pre-emption

The system pre-emption mechanism is invoked whenever a
process is put on the ready list. It goes through the
following steps (assume that process A is being put on
the ready list):

1. If process A"'s level number is unequal to 1, return.

2. Find the running process with the lowest-priority
(highest value) level number (let's name it
process B).

3. If process B"'s level number is equal to 1, return.

4. Call pre-empt (processor) where the argument is
the number of the processor on which process Bis
currently executing.

For reasons of efficiency (processes are very frequently
put on the ready list), step 1 is executed in-line in
the Traffic Controller primitive which threads processes
into the ready list. Only when the ready process is known
to have level 1 is a call made to the pre-emption module.

~ Pre-emotion

The user pre-emption machanism in invoked whenever a process
has exhausted a time-quantum and is executing in the Timcr­
runout Fault Handler. The fault handler goes through
the following steps:

1. Increments a count of 'time-quanta-used'. This
count is maintained in the process' PDS and indicates
the number of time-quanta that the process has
used up out of its current time-allotment.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.02 PAGE 4

2. Sees whether or not the process still has time left
out of its time-allotment. Whenever a time-quantum
is. loaded into the timer-register, it is deducted from
the process 'time allotment (the last value loaded
into the timer-register might therefore be less than
a full time-quantum).

3. If no time available, it generates a timer-runout
interrupt for this process. Return.

Following is the pre-emption mechanism:

4. Compare this process' level number to the level number
of the top-most process on the ready list (a variable,
named "highest_loaded", is maintained by the Traffic
Controller and contains the level-number of the top-most
ready process).

5. If this level number is of higher-priority than the
level number of this process, and if the time-allotment
for that level (found in array II leve l_coeff ic i ent11

in segment tc_data) is lower-than or equal-to this
process' time-quanta-used count then call pre-empt
(processor) where the arguments is the processor
number of 1bJ..§. process (self pre-emption).

6. Else, load a time-quantum into the timer register,
return.

\.

