
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.3.03 PAGE 1
(

Published: 1, /30/66

Jdentification

Quit
R. L. Rappaport

Purpose,

Entry point guit in the Traffic Controller provides the
mechanism whereby one process can halt the execution of
another process.

Preface

The description of quit that follo\tJS is divided into three
sections. The first section presents the basic outline
of the subroutine. This would be an adequate description
if it could be assumed that processes in the system were
never unloaded and that execution of the subroutine would
take place 1:Jhi le:

1) The processor was completely masked against interrupts.

2) A global interlock \,Jas on \vhich denied access to the
Process Exchange to all processes except the one in
which this subroutine is currently executing.

The second section presents the necessary additions to
the basic outline that enable the unloading of processes
to be accomplished. Tl1e final section is a complete specification
that describes the steps that must be taken to allow more
than one process to be concurrently executing in the Process
Exchange.

Introduction

A process that has been 11 qui t" appears to be a norma 1
process that is in the "blocked" state, and, in fact,
it is. The difference between a "quit" process and another
blocked process is that a process going into the blocked
state normally arranges to be sent a wakeup signal, but
a process that has been "quit II wi 11 not receive a wakeup
signal until the process which 11 quit 11 it decid2s to send
it one. A process that is trying to quit another one
then must go through two steps:

1. It must cause the process to enter the blocked state.

2. It must prevent any wakeup signals from reactiing the
blocked process.

Entry point ,q_uit in the Process Exchange is concerned \vith the
first of these steps. The discussion of quit handling
in B0.1 .08 describes the second step.

,,,......__

.__,

,,,,_

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.3.03 PAGE 2

The calling sequence for
. . .o.Y.i.t. is:

ca 11 quit (A);

where A is the process I .D. of the process to be quit (the
target process).

The strategy used in causing a process to go into the
"blocked" state depends upon its current execution state.
If the process is "ready", it must simply be removed from
the ready list. If the process is runnin~, it must be
sent a process interrupt that will cause 1t to call entry
point block (see Section BJ.3.01) in the Process Exchange.
Since subroutine blod does not cause a process to become
blocked if its wakeup-waiting switch is QD., QUit turns
Qff. the wakeup-waiting switch of the target before interrupting
this process. If the process is al ready "blocked'\ nothing
need be done. Therefore, QUit. is basically simple; it
determines the execution state of the target process and
takes the appropriate action as described above.

Figure 1 is an illustration of the basic outline of .Q1!.il.

8.Q.Qitions to enable unloading Q.f processes.

The ·reason for "quitting" a process is to force it to
stop running as soon as possible. If the process is not
currently loading, as soon as possible means immediately.
If the process is loading itself, as soon as possible
means immediately after the loading is complete. This
is because a process in the midst of loading itself temporarily
uses several pages of "wired down" core storage. If the
process were stopped indefinitely, the core would remain
"wired down" indefinitely. (See Section BJ.1.02.) ¼lhat
this means is that quit must be able to notify a loading
target process that it has been quit and that this loading
process must still be able to complete the loading operation.

If the target process is loading (as can be determined
'by the state of the target's process-loading switch) quit
will set .QD. the target's quit-waiting switch and then
return, regardless of the current execution state of the
target. All processes when resetting their state from
loading to loaded in swap-dbr (Section BJ.5.01) are required
to check the contents of the quit-w~iting switch and go
blocked if it is .Qll. In th.is way the quit is delayed _
until the loading is complete. Figure 2 illustrates the
basic outline of quit with the addition necessary to enable
unloading of processes.

,C,QmQlete Specification of .lliJ.i.:t.

With several processes possibly. executing in the Process

MULTICS SYSTEM-PROGRAMMERS I M.~NUAL SECTION BJ.3.03 PAGE 3

Exchange concurrently, steps must be taken to coordinate
their actions. In particular, tw6 general steps have
been taken. First, certain interlocks and switches have
been placed in the ~ctive Process Table entry of each
process. By observing common rules about the interlocks
the various modules are able to guarantee the integrity
of the data 1ivith vvhich they deal. Secondly, at certain
times \ilJhi le some of these interlocks are set, tr1e processor
referencing the locked data must be masked against all
interrupts. This is to prevent the possibi 1 ity of putting
a processor into an infinite loop. (For a complete discussion
of coordination in the Process Exchange see section BJ.6)

The main coordination problem faced by .mJ.i.1. occurs \ii/hen the
target process is in the ready state. The problem arises
from the fact that the target may have already been chosen
to run in subroutine getwork (Section BJ.4.02). If this
is the case the target, although in the ready state, may
change its execution state to running at any instant.
In this case the course of action that .Qlli.t should follow
is not clear. Therefore ,ouit should defer action until
either the taraet 1 s execution state is chanoed to running
on until it is..,determined tT1at S\il!~p-dbr (Section BJ.5.01)
will be unable to switch cbntrol of a processor to this
tar~et. Quit determines whether or not a ready process
is 1cT-10sen" by testin~ the status of the process-chosen
switch in the process Active Process Table entry. This
switch is turned .Q.Q in get~·,,ork when a process is picked
to run. It is turned off in .s1@p-c1br if the s1J11itching
is successful. If the switching is unsuccessful it is
turned gff by oetwork vvhen sv:9o-dp_c performs an error-return.

There are ti/Jo other coordination problems \rJhich must be
faced in _qu i.:t. The first is that .cllLi.1 makes use of several
data items \1'111ich ot11e1~ Traffic Controller modules might
attempt to make simultaneous use of. In order to prevent
fatal mishaps an interlock has been created wnich controls
access to these data items. The interlock is the process­
state lock and it exists as a data item in the process'
;i.ctive Process Table entry. The items to \rJT1ich it governs
access a re:

1 • The running swi ten

2. The ready switch

3. The qui.t-vvaiting s1tJi tch

4. The v1akcup-wa it i ng switch

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.3.O3 PAGE 4

The first two items define the process' execution state,
and the use of the second two has already been discussed.
In quit, none of the above svJi tches may be refer red to
or altered unless the appropriate process' process-state
Jock has been locked.

While the process-state lock is set in .a.pit the processor must
be masked against all interrupts. This is to prevent
an interrupt from being serviced vihose handler might attempt
to set this same process-state lock. Therefore the processor
must be completely masked before the process-state lock
is set in guit and cannot be unmasked until this lock
is reset.

The final coordination p.roblem has to do with the fact
that quit. makes use of _the ready list. The ready list
has a global interlock 1t1hich limits access to one process
at a time. Therefore .Ql,dt must lock the ready list prior
to referring to it. This will ensure that no other process
is using this data base. Since getJ:York uses the ready
list in choosi.ng processes, e1uii snould lock the ready
list prior to testing the status of the target's process-chosen
svJitch. The ready list lock vJill prevent get\•,1ork from
choosing the target after its chosen switch has been tested.
Finally, it should be stated that the ready list can only
be locked v-./hile the processor is completely masked. Ho1t1ever,
in ouit tl1e ready list is locked only vJhile the target's
state is locked and this first locking can only be accomplished
wT1i le the processor is masked. Hence, no more masking
is needed. Figure 3 is a complete flovJ diagram of .Q.l)it.

MULTICS.SYSTEM-PROGRAMMERS' MANUAL

In process B, call quit (A);

remove A

£rom ready

list

Yes

-return

Figure 1. Basic Outline of quit.

SECTION BJ.3.03 PAGE 5

Reset A's
"r-----wakeup Waiting

Switch

Send A
process

interrupt

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.3.O3 PAGE 6

In process B, call quit (A,);

Remove A
from read1
list

Yes

Figure 2. Basic outline of quit with additions

No

Set quit waiti g

switch for

A set

Yes

eset As
-Jakeup
faiting
Switcfi

I
Send A
quit
interrupt

,,,......,

MULTICS SYSTEM-PROGRAMMERS' MANUAL

In process B, call quit (A);

Unmask

Mask
All
Interrupts

Set A's
state
lock

SECTION BJ.3.O3 PAGE 7

unlock
A's
state

set quit
.'Y"-----,;>----1waiting

unlock
ready
list

Yes
lock

----~--~ready
list

remove A from
ready list an

set A Blocked

unlock

ready

unlock
A's

state

Unmask

switch for
A

ese s
wakeup

r::,-.,-.+waiting
switch

send A
Quit

Interrupt

(return)

Figure 3. Complete flow diagram of quit.

