
MULTICS SYSTEM-PROGRAMMERS- MANUAL

IntroductiQil

l;Jakeup
R. L. Rappaport

Purpose

SECTION BJ.3.02 PAGE 1

Published: 11/30/66

This procedure provides the mechanism whereby processes
may signal one another.

p rG_f_?C§.

The description of wakeup that follows is divided into
tvJo sect ions. The first sect ion presents the basic out 1 i ne
of the subroutine. This would be an adequate description
if it could be assumed that execution of the subroutine
will take place while:

1) The processor is completely masked against
interrupts.

2) A global interlock is on VJhich denies access to the
Pr6cess Exchange to all processes except the one in
which this subroutine is currently executing.

The second section is a co:-11plcte spec5.fication that describes
the steps that must be taken to allovv mot~e than one processoi·
to be concurrently executing in the Process Exchange.

Basic Out 1 inG.

In Multics, a process wishing to iignal another process,
calls subroutine wakeuQ~ in the Process Exchange, on behalf
of the other process. (In this document the process calling
v1,:1L~D ... ld12 vJi 11 be referred to as the ~-~11.Lcr:. and the process.
being s i gr1a 1 ed v1i 11 be refen-ed to as the tzu::.fl§:._i;;_.) The
action taken by the target process, in response to the
signal, does not concern us here. We are only concerned
with how the signal is passed along.

The strategy taken by \rJ.:1kGJ.JQ in attempting to s:tgnal the
target process depends on the current execution state
of the target process. In order for· a process to be II avJare"
of anything, it must be executing. Hence, vml$eldQ must
do two things to insure that the target process is made
- 1\,r.1 r·0~ o .r. t'nr-. .- 'tor·-, 1 · c~ ~ <..... ·.... I, ~ .. .:; I c~ •

1. It must leave ev:ldence of the signc:il to the:: target
process.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.3.02 PAGE 2

.2. It must make sure that the target process is either
scheduled to run in the future, or running now, so
that it can_ inform itself of the signal.

The above steps are accomplished in the following way.
If the target process is currently in the blocked state,
wakeup_ calls subroutine ready--him (see section BJ.5.02)
in the Process Exchange, in order to schedule the blocked
target process. This one step accomplishes both of the
above tasks. The scheduling clearly accomplishes task
2. The first task is accomplished by implication in that
the scheduling of the target insures its future return
to the running state, and upon elevation to the running
state, the process will retu~n to the procedure which
called block (see Section BJ.3.01). This return from
block implies that a signal has been received. If, however,
the target process is not currently blocked, no scheduling
must take place but in this case explicit signaling must
take place. This is done by setting on the target process'
wakeup-vvaiting svJitch. This svJitch is one of the data
items in the target process' entry in the Active Process
Table (see Section B~.2.01).

The ca 11 i ng sequence fot~ vvakeup •is:

call wakeup (A, error-return):

where A is the process I.D. of the target process and
error-return is an alternate return to vJhich control should
be passed in case A is not active. An inactive process
has no Active Process Table entry and 1:1akelJQ is incapable
of doing anything (see Section BJ.1 .00) for such a process.
The stack used on this call is the processor stack.

To recap briefly, ~@J.<~eup simply ascertains the execut5.on
state of the target. If this state is 11 blocked11 , ready--hirn
is called on behalf of the target. If this state is not
blocked then the wakeup-waiting switch for the target
is set on. Figure 1 illustrates this basic outline of
y✓a kCUJ2.

Como l ete $pee 1 f i.cat ion of Vla_l<et.LQ

With several processes possibly executing in the Process
Exchange simultaneously, steps must be taken to coordinate
their actions. In particular, tv:o general steps have
been taken. First, certain interlocks and switches have
been established in the Active Process Table entry of
each process. By observing common rules about the interlocks,

MULTICS SYSTEM-PROGRAMMERS"' M.4NUAL SECTION BJ.3.02 PAGE 3

the various m?d~les.are able to guarantee the integrity
of the data w1tn which they deal. Second, the processor
may, at times, have to be masked against all interrupts
or inhibited, while it is altering these interlocks or'
switches. (For a complete discussion of coordination
in the Process Exchange see Section BJ.6.). Wakeup makes
several contributions to the coqrdination effort.

I

To understand the first extra step taken by \ll!akeld.Q one
must first understand the purpose of subroutine wakeuo
and what receipt of a wakeup signal meons. To doth-Is,
it must be understood that no information is passed along
to the target as to the nature of the reason for the signal,
as a result of the call to ~akeu.Q. Any explicit data
communication is accomplished, by the caller, prior to
the call to vvakeup, for example by storing information
in a common data base. The wakeup signal is only an indication
that something of interest has occurred. Hence a process
wishing to \rJc;keu12 another process can save i tse 1 f the
trouble if a third process is already in the midst of
waking up the desired target, since the second wakeup,
itself, will give the target no new information. We call
such a ca 11 to ~,;a~e!J.J2 a redundant ca 11 . A ca 11 to y1_c,:1kCLill
for target process A is redundant if someone is in the
midst of waking A, or if process A is not running and
if the time at which A ceased running the last time is
prior to the last ca 11 to \.'-.,akf&Q. on A "'s beha 1 f. That
is if A is not running between times T1 and Tz, all but
the first call to wo.keuo for A after T1 but before T2
would be redundant. It should be noted that redundant
cal ls to vvakeUJ?. are not disastrous, only wasteful. Therefore,
if a call is possibly non-redundant, it must be allowed
to go through. It must also be noted that redundant calls
to r..Q?_dy-him must not be allm'1ed as this vJould put the
process on the ready-list twice.

To summarize the above, it is desirable to prevent redundant
wakeups and absolutely essential to prevent redundant
calls to ready-him. This is accomplished by the use of
an interlock knovm as the \vakeup lock. This per-process
data item exists in the Active Process Table entry of
each process. Wakeuq makes use of it in the following
vvay. Upon entry v-1ak?..lill. attempts to set the v✓akeup lock
of the target process. If the lo.ck is already set, v1ake.Ll.P­
merely returns to its caller knowing that some other process
will succeed in waking the target.

1-F the vJ0k~up lock is not already set, wakeup sets it.
Imme cl ia tel y be fore returning t1akellf-2 resets the 1 ock.
The v1a.keup lock succeeds in preventing redundant cal ls

MULTICS SYSTEM-PROGRAMMER' MANUAL. SECTION BJ.3.02 PAGE L~

to ready-him since it allows only one process to be instan­
taneously waking up a particular target. After the first
ca 11 to vn:~keLfil is con1plete., the target :ts guaranteed not
to be blocked and hence subsequent ca 11 s to ic.ia.l5£~UJ2 1ivi 11
not be translated :i.nto calls to ready-htrn.

Bes ides the \·Jakeup 1 ock of the target process, t@keu12_
makes use of one other interlock and one svJi tch in the·
coordination effort. These are the process-state lock
and the intermediate-state switch of the target process.

The process-state lock controls access to a group of data
items in the respective process' Active Process Table
entry, which define the process' execution state. The
effect of this lock is to guarantee that the state of
a process, as defined by these data items, can only be
referenced or a 1 tered by one process at a time. In v,1akeup
thjs means that the target process- process-state loci<
must be locked before determining whether or not the process
is blocked. It also means that the process-state lock
must be u n 1 ocked before the ca 11 to re_0 dy-h irn is made,
if th:i.s cal 1 is necessary, since @JdY.::hinJ vJ:i. 11 attempt
to lock the target process- process-state lock also.

The intermediate-state s~,Jitch of a process, if orJ., indicates
that th2 process should not be considered as a candidate
for running at ti1 :i.s time, even though the process may
be on the ready list. This switch is used in wak~up in
the following v1ay. As mentioned 2..tbove., it is absolutely
necessary to insure that all possibly non-rejundont calls
to wakeup go through. The strategy for accomplishing
this goal makes use of the intermediate-state switch of
the target if this process is currently blocked. After
it is determined that the target process is blocked., its
state is unlocked and its intermediate-state switch is
set pn_. The w::1keup lock must remain locked to prevent
redundant calls to ready-him on behalf of the target,
and the intermediate-state switch being on prevents the
target from running, until the wakeup lock can be unlocked.
If the target process were to start running before its
\vakeup lock vJas unlocked, it could generate a need for
a wakeup that could be blocked by the wakeup ·lock. Upon
return from ready-hjm the wakeup lock is unlocked and
the intermediate-state sv1:ttch set otf.

In addition to the above use of interlocks and switches,
vJa_kCLLP also makes use of processor masking in· its attempt
to coordinate \,vith other Process Exchange modules. If
the target process is not blocked then the sequence of
instructions that unlocks the tarqet"s vJakeup and state

r·

MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BJ.3.O2 PAGE 5

locks must be executed while the processor is masked against
all interrupts. Otherwise, if, in between the time the
wakeup lock of the target was reset and the state lock
VJas reset, an interrupt occurred on this same .processor
which necessitated a ca 11 to Vvg_f~euQ for th is same target
then the processor would be caught in an infinite loop
waiting for the target's state to unlock. (This example
points out the most important benefit derived from the
wakeup lock. It al lovJs subroutine vJakeup to be executed
while the processor is relatively unmasked (i.e., wakeup
executes with the mask with which it was called) and yet
this lock still prevents redundant calls to ready-him
the same target.) Figure 2 is a complete flow diagram
of wakeup.

It might be argued that reversing the tvJo steps described
in the immediately preceeding paragraph would make un­
necessary the masking of the processor. HovJever, th is
VJi 11 not vvork for the same reason that the intern1sdiate­
state switch was a necessity above. If, in between the
time the process-state lock and the wakeup lock were reset,
an interrupt occurred on the processor executing wakG.!d.Q,
enough time would be spent in servicing the interrupt
so that the target may have generated the need fo1~ a vJakeup
vvhich vJould have been stopped by the wakeup lock. (See
Section BJ.6 for a complete justification of the above
arguments.)

r·

MUL T res SY s TEM-PROGR/i.MMERS ~ t-t~\NUAL- SECTim~ BJ.3.02

In process B, call wakeup (A);

/ No
/ Is_ .. go to

/ A act1.~_://--D- error-return

Yes

Call
Ready-him

(A)

return <:]------~

Figure 1. Basic Outline of Wakeup

Pt\GE 6

, I

MULTICS SYSTEM-PROGRAMMERS' M~NUAL

Unlock
1, IS

state

_
ct A I S J ot re,dy
witch

1_1 --1
a 11 ready··

1im (A);

Yes

SECTION BJ.3.02

In process B, call '\•:t:eu;:i
(AJ error-return);

Unlc,ck
A's
state

Restore
Prev:i.ous
r.1ask

