
MULTICS SYSTEM-PROGRAMMERS' MANUAL
13

SECTION BJ/. 02 PAGE 1

P~blished: 03/24/67

Identification

Ready-him
R. L. Rappaport

Purpose

Entry point ready-him in the Process Switching Module,
provides the facility by which a process, the calling
process, can give temporary control of a processor to
another process, . the target process, so that the target
process can schedule itself.

Preface

The description of ready-him that follows is divided into
two sections. The first section presents the basic outline
of the subroutine. This would be an adequate description
if it could be assumed that processes in the system are
never unloaded. The second section presents the necessary
additions to the basic outline that enable the unloading
of processes to be accomplished.

Basic Outline

A process wishing to signal another process calls subroutine
wakeup (see Section BJ.3.02) on behalf of this second
process. The signaling is accomplished iri wakeup by explicitly
turning on a switch belonging to the signaled process
and by insuring that the signaled process is scheduled
to run in the future. If the signaled process is curr~ntly
in the blocked statei this means the signaled process
is not scheduled to run in the future and wakeup calls
entry point ready-him in order to schedule the signaled
process. Ready-him accomplishes the scheduling of this
target process by first switching the processor to the
address space of the target and by the~ calling the scheduler
that exists in that address space. Upon ~eturn from this
scheduler, ready-him switches the processor back to the
address space of the calling process and returns to wakeup.
(One should note that the above few sentences imply that
ready-him exists in the respective address spaces of both

~the calling and target processes and in the same relative
location in each address space.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL .SECTION BJoS.02 PAGE 2

Ready-him is called with one argument, the Active Process
Table index of the process due to schedule itself. The
calling sequence is:

call ready-him (apt_index);

where apt index is the index mentioned above. The stack
used in this call is the Processor Stack (see Section
BK.1.03) of the processor executing ready-him.

Conceptually ready-him is simple. It consists of an ldbr
instruction followed by a call to the scheduler (see Section
BJ.4.00) followed by a second ldbr ins-truction. The first
ldbr switches the processor from the address space of
the calling process to that of the target process. The
second ldbr switches the processor back to the address
space of the calling process. Two additional steps must
be added to ready-him to complete the description but
we first present a little background information to clarify
the issues.

The stack used in ready-him is the Processor Stack. In
order for both the calling process and the target process
to use the same stack segment, this segment must appear
in the address space of each process. That is, each process
must have a segment descriptor \vord, for this segment,
in its own descriptor segment. In order to guarantee
that the target process has such a segment descriptor
word in its descriptor segment, ready-him passes this
word to the target process. ~'/hen an ldbr instruction
is executed the address space of the processor changes
although the machine registers remain fixed (except of
course the descriptor base register). There~ore, immediately
before the ldbr instruction, the calling process loads-
the A-register with the segment descriptor word for the
Processor Stack. It obtains the word from its own descriptor
segment. Immediately after the ldbr instruction, the
target process stores the A-register directly into its
own descriptor segment and in this way has 'access to the
segment. This step implies ready-him knows the segment
number of the Processor Stack in each process. Actually
hardware and software constraints al ready require that
all processes must know this segment by the same segment
number so therefore ready-him must only kno.v or be able
to obtain one number. The second ldbr need not be preceeded·
and followed by the above steps since this time we are

·I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ .5 .02 PAGE 3

switching to a process that is guaranteed to have a segment
descriptor word for the Processor Stack. .

We can now formally specify the basic outline of ready-him.
The steps are tabulated below and are illustrated in figure 1.

1. Load the A-register with the segment descriptor
word for the processor stack.

2. Execute the ldbr instruction to switch to the
target process.

3. Store the A-register into the current (target's)
descriptor segment.

4. Ca 11 scheduler.

5. Execute the ldbr instruction to return the
processor to the calling process~

6. Return.

Additibns to Enable Unloading of Processes

The loaded state for processes can be defined explicitly
(see Section BJ.1.00) however a more intuitive definition
is called for here. Certain modules in the harcore supervisor
perform functions whose execution cannot be interrupted
by page faults. For example., all modules engaged in servicing
page faults would be included in this category. Basically.,
a loaded process is one which is capable of executing
in these hardcore modules without generating a page fault.

If the target process in the call to ready-him is not
loaded., ready-him must prepare the target so that it wi 11
not get any page faults from the time it receives control
until it relinquishes it. Since the target process will
only be executing in a certain well defined subset of
the hardcore supervisor it need not· be completely loaded.
In fact., al 1 that needs be done in prepara_tion is ·to create
a descriptor segment for the target if it· is unloaded.
This d~scrlptor segment is created in two steps. First
entry point createseg in Segment Control (see Section
BG.3.00) is called to obtain an empty wired-down segment.
Then the contents of the template descriptor segment (see
Section BJ.5.06) is copied into the newly created segment.
This descriptor segment will serve the target until the

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.02 PAGE 4

return.• When the calling process rega.ins control, it .
destroys the descriptor segment cr:-eated above by an explicit
call to entry point killseg in Segment Control.

The reason for ·destroying the descriptor segment has to
do with the nat~re of entry point createseg, One of
the arguments specified in this call is the urgency with
which this segment to be created is needed. This urgency
argument dete rmtnes whether or not th is request for wired-down
core can be met with the present use of core space. That
is, it determines whether there is enough free core space
available to ser~ice the request. If there is not enough
space available createseg performs an error return to
its caller. Since ready-him may be called in response.
to a system interrupt, it cannot tolerate a refusal from
createseg. In order to justify the high priority that
it needs, ready"'."him guarantees to return the core space
in a short space of time. Therefore the segment is destroyed
as soon as it has served its purpose. In this way ready-him
is al lowed to call createseg with an urgency argument
that createseg guarantees to service.. In particular,
if there are N processors with K levels of interrupt each,
there will never be more than N times K segments created
with this urgency at once.

Ready-him can now be completely specified~ It is tabulated
below and i-llustrated in figure 2.

1. The ca 11 ing process determines whether the target is
loaded. If it is go to step 4. This determination is
made by testing the target's not loaded switch, a data
item in the target's Active Process Table entry.

2. Createseg is cal led to create a descriptor segment for
the target.

3. The contents of the template descriptor segment are
copied into·th~ segment created in step 2.

4. The A~register is loaded with- the segment descriptor
word for the Processor Stack (which is contained in the
Processor Data Segment).

5. · The ldbr is executed to switch to the target.

6. The A-register is stored into the current descriptor
segment word appropriate for the Processor Data Segment.

MULTICS SYSTEM-PROGRA~~ERS' MANUAL SECTION BJ.5.02 PAGE 5

7. The scheduler is called.

~- The return ldbr is execu~ed.

9 •. The target's not ·loaded switch is again tested. If
it is off (i. e. 1 the process is loaded) go to step.11. - .

10. Entry point killseg is called to destroy the segment
created in step 2.

11. Return.

Wrapup

One last thing should be noted at this point. The ldbr
instruction may only be executed in master mode. In order
to isolate this instruction from the rest of ready-him 1

the actual instructions are contained in a distinct master
mode segment 1 the ldbr segment (see Section BJ.5.04).
Actually., the instructions associated with steps 4 through
6 are located at entry point ldbr_2 in the ldbr segment
while the instruction associated with step 8 is located
at entry p9int. 1dbr_3 in the ldbr segment. These items
are noted 1n figure 2.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ .5 .02 PAGE 6

In pro-cess J, cal 1 ready-him (K);
.

, '
lda with sdw
of processor
data seament

. ,
ldbr (K)

,,

sta sdw

- , ,

cal 1 scheduler

. , '

ldbr (J)

, '
(return

Figure 1 •. Basic outline of Ready-him •

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ. 5. 02 PAGE 7

While in process J, call ready"."him (K);

Call createseg no
for descriptor 1.1111:11--------------<...
segment

r- _______ ~dbr2
Initialize
Descriptor
Segment for
Process K

, oa A-r-egJ_.ster
I ith value of I

1--------------~escriptor for I

D~ta I

Figure 2o Complete Flow Diagram
£ or Ready-himo ·

t

I

LDBR (K)

~tore. A-registe·
into dessiil>tor segment s ·ot .
reserved or
processor data
segment.

!
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I L ___ _

--- - .J

Call Scheduler

r---_
I
I LDBR (J)
I t
I .._ __ ___. I L ____ . ___ _1

call killseg
for K -

No descriptor
~--i>I\II segment

returi;i

