[
MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BJué?O1 PAGE 1

) Published: 03/24/67
(Supersedes: BJ.5.,01, 09/13/66)

Identification

Swap_dbr
R. L. Rappaport

Purpose

Swap_dbr is the procedure in which processes give up control
of a processor,

Preface

The description of swap_dbr that follows is divided into

three sections, The first section presents the basic

outline of the subroutine, This would be an adequate
description if it could be assumed that processes in the
system are never uniocaded and that execution of the subroutine
will take place while; .

1. The processor is completely masked against interrupts.

2, A global interlock is on, which denies access to the
Process Exchange to all processes, except the one In
which this subroutine is currently executing.

The second section presents the necessary adcitions to

the basic outline that enable the unloading ct processes

to be accomplished The final section is a complete
specification that describes the steps that must be taken
to allow more than cone process to be concurrently executing
in the Process Exchange,. ’

Basic Qutline

Entry point swap_dbr, conceptually, is nothing more than

an 1ldbr (load descriptcr segment base register) instruction,
However, at process-switching time many associated bookkeeping
and housekeeping chores must be taken care of, These

chores include accounting for processor usage, updating
information in the Active Process Table, etc,

The call to swap_dbr originates in a process, the calling
process, while the calling process is executing in subroutine
getwork (see Section BJ.,u4.02). The principal argument

passed to swap_dbr is a data item which indicates the

MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTICN BJ.5.0% PAGE 2

process to which control of the processor w 11 be given,

the target process, The actual data item passed in this

call is the Active Process Table index of the target process,
- The complete calling sequence for swap-dbr is: .

call swap_dbr (apt_index, error_return);

where apt_index is the Active Process Table index of the
target process and error_return is the location of an
error return in the calllng procedure The error_return
- is not actually needed if no unloading of processes is
allowed. Therefore this argument will not be mentioned
again in the basic outline of swap_dbr. The stack used
in this call is the Process Concealed Stack which is contained
in the Process Data Segment.

As mentioned above, there are several housekeeping chores
handled in swap_dbr, Before describing the steps taken
in swap_dbr, it is important to understand the problems
which these steps are meant to solve, These problems

are enumerated and described below,

1. As swap_dbr is involved in process switching on the
various processors in the system, this subroutine must
assume part of the responsibility of accounting for processor
usage. This accounting is handled by two steps taken
in swap_dbr, At an appropriate point in the execution

© of swap_dbr, the Processor Metering Module is called and
processor usage since the last call is metered to the
account currently responsible, The acccount currently
responsible is specified by a data item in the Processor
Data Block (see Section BK,1.02). Swap_dbr then determines
which account will be responsible for prccessor usage
in the immediate future and a pointer to this account
is stored in the Processor Data Block, The account to”
which processor usage should be charged while process
A is runnlng, is contained in process A“s Active Process
Table entry., Therefore, swap_dbr determines Wthh account
will be responsible by referrlng to the target’s Active
Process Table entry.

2. When swap_dbr is entered, the processor timer register
contains the value stored by the calling process minus

the number of memory cycles sed by this prccess., At

some point in the procedure the timer register must be

MULTICS SYSTEM-PROGRAMMERS’ MANUAL SECTION BJ;S.O# PAGE 3

reset to the value prov1ded by the target”s scheduler
(see Section BJ.4,00) the last time the target was running.

3. The basic-outline of swap.dbr assumes that all processor
interrupts are masked during the execution of the subroutine,
This means that any interrupts which occur will not be
serviced until after swap_dbr has returned, Two types

of processor interrupts exist: system interrupts and process
interrupts., System interrupts are of interest to the

- processor itself and their servicing can be safely delayed,
Process 1nterrupts however, are of interest to the process
executing on the processor and delaying them until after
swap_dbr returns means that the wrong process will be .
interrupted., Therefore, swap_dbr must insure that any
process interrupts meant for the calling process, which

are behind the processor interrupt mask, do not interfere
with the target process., The strategy employed for removing
these interrupts from behind the mask hinges on the nature
of process interrupts, That is, all process interrupts
u]timately cause the interrupted process to call swap_dbr.
Since in this case the calling process is already executing
in swap_dbr, any process interrupts directed towards the
calling | process can be safely ignored, The only way to
remove interrupts from behind a mask is to allow them

to occur (i.,e., unmask them), Therefore, to "drain" a
particu1ar process interrupt, the particular interrupt
handler is informed, by the setting of a switch,- that
draining is taking place the 1nterrupt is temporarlly
unmasked and then this switch is turned off again and

the processor is remasked, If the interrupt was behind

the mask, it would have been serviced while the processor
was unmasked and the switch setting would have informed

the handler that the interrupt is being draimed, The

switch used is the drain switch and it exists as a data

item in the Processor Data Block. In swap_dbr two of

the three process interrupts are drained: the timer runout
interrupt and the quit interrupt. (The third process
interrupt, the pre-emption interrupt, is previously drained-
in getwork,)

L, When an 1dbr instruction is executed the address
space seen by a processor changes while the other machine
registers remain fixed, In particular, since the target
process and the cal11ng process need not be at the same
stack level, base register sp must be reset after the
1dbr is executed, Clearly then, before the 1dbr, the
calling process must store the current value of sp so

MULTICS SYSTEM-PRCGRAMMERS” MANUAL SECTION BJ.5.01 PAGE L

that it will be available the next time this process begins
to run, After the ldbr the target must retrieve its stored
value for sp and reload this register, The value of sp

- is stored in the respective Process Data Block of each

- process,

5. In order for a processor to handle faults and interrupts
properly, the process executing on the processor must

have access to the Processor Data Segment (see Section
BK.1.01) that belongs to this processor, Swap_dbr assumes
the responSIblllty for transferring the segment associated
with a particular processor to the process that is due

to run next on this processor, In order to pass along

the Processor Data Segment to the next Process, the segment
descriptor word for this segment is loaded into the A-register,
by the calling process, immediately before the switch

is made., Immediately after the switch (i.e., the 1dbr
instruction) the target process stores the A-register

into its own descriptor segment at the appropriate relative
location for the Processor Data Segment, (This step assumes
all processes know the Processor Data Segment by the same
segment number and that swap_dbr knows this number,)

6. /hen swap_dbr is entered the target process is still

on the ready list and its execution state is defined as
ready., That is, the ready switch in the target”s Active
Process Table entry is on, At an appropriate point swap_dbr
removes the target from t the ready list and redefines its
execution state to running.

At this point.all the basic issues faced by swap_dbr have
been presented and it is possible 'to intelligibly specify
the basic outline, Once the significance of the above
problems have been understood, the actual steps taken

by swap_dbr are seen to be falrlv straight-forward. The
steps of swap_dbr are described sequent1a1lv below and
are also illustrated in figure 1,

One point should be kept in mind, Before the 1dbr instruction,
swap_dbr executes in the address space of the calling

process and after the Idbr it executes in th° address

space of the target prccess,

1. Processor usage is accounted for., This is done by
calling subroutine mzter cpu (see Section B0,1.01) with
two arguments: the Active Meter Table (see Section B0O.1.07)
index of the account currently being charged and the amount

PN

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BJ.5.01 PAGE 5

of usage since the last call to meter_cpu. The amount:
of usage is determined by subtracting the current value

- of the processor timer register from the value of the

timer register at the time of the last call. This last
value is saved in the Processor Data Block, The Active
Meter Table index of the account responsible is also stored
in the Processor Data Block. :

2, Timer runout interrupts are drained. That is, the

“drain switch in the Processor Data Block (of this Processor)

is set gn and a new processor interrupt mask is established.
This new mask masks all 1nterruphs except timer runout
interrupts. The new mask remains in p]ace for one instruction
whereupon the old mask is restored and the drain switch

is turned off. If a timer runout had been waiting behind

the mask it would have been accepted and handied appropriately.

3, The timer register is reset with a new value and

the Active Meter Table index of the account to which processor
usage will be charged while the target process is running

is stored into the Processor Data Block. Both of these
quantities are obtained from the target process”® Active
Process Table entry.

L, Quit interrupts are drained. The procedure is similar
to that involved with timer runouts except that the temporary
mask used unmasks only quits rather than timer runouts,.

5. The calling process stores the current value of base
register sp into its Process Data Block.

6. The segment descriptor word of the Processor Data
Segment for this processor is loaded xnuo the A-register.
It is cbtained from the calling process’ descriptor segment.

7. The 1dbr instruction is executed. The operand of
this instruction is the absolute address of the base of
the target’s descriptor segment,

8. The A-register is stored into the target’s descriptor
segment. '

c. Base register sp is loaded with a naw value, This

- value is obtained from the current (i.e., the target’s)

Process Data Block.

10. The targat process redetines i
to the running state, That is, the
off and the running switch is set on

MULTICS SYSTEM-PROGRAMMERS* MANUAL SECTION BJ.5.01 PAGE 6

Process Table entry.

11. The target brocess removes itself from the ready
Tist,

12, Swap_dbr Feturns to its caller in the target process,

Additions to Enéb1e Unloading of Processes

Certain modules in the hardcore supervisor perform functions
whose execution cannot be interrupted by page faults,

For example, all modules engaged in servicing page faults
would be included in this category. This implies that

all private data (e.g., stacks), belonging to a process,
which might be referenced by one of these modules must

be in core storage while the process is running., A process
which is capable of running without causing such page
faults is known as a loaded process and a process which

is incapable of running without a minimum of preparation .
is known as an unloaded process., At any time swap_dbr

may be called upon to switch control to an active (see
Section BJ,1.00 for an accurate definition of this state),
unloaded process., Swap_dbr assumes the responsibility

of preparing active, unloaded processes so that they are
able to run, :

Briefly, a loaded process is an active process which has

a hardcore ring descriptor segment and also has its Process
Data Segment in core, The preparation swap_dbr goes through |
when called to switch to an unloaded process results in

the unloaded process appearing to be loaded. This is

done by giving the unloaded process a standard hardcore

ring descriptor segment and an Interim Process Data Segment,
These two segments allow the unloaded process to take
control of the processor without jeopardizing critical
system procedures, However once in control the process

will recognize that it is unloaded and will not attempt

to return from swap_dbr, It will instead call out to

a procedure which will restore to core storage all data
needed by the process in order to function properly.

Once the process is completely restored it is then able

to return from swap_dbr, ’

Specifically, swap_dbr, when called, determines whether

or not the specified target process is unlocaded, The
Active Process Table entry for a process contains a switch,
the "not loaded switch", whose value is a function of

the state of the process, If the switch is on the process

MULTICS SYSTEM-PROGRAMMERS © MANUAL = SECTION BJ.5.01 PAGE 7

is not loaded, If the target process is not loaded several
extra steps must be taken by the calling process in swap_dbr
before control is transferred and several extra steps

must also be taken by the target process in swap_dbr after
the switch is made,

First let us consider the additional steps taken by the
calling process., The following steps can all be insterted
between steps 2 and 3 of the basic outline., The first
half of swap_dbr (i,e,, before the 1dbr) with these additions,
is illustrated in figure 2, If it is determined that

the target process is unloaded, entry point createseq,

in Segment Control (see Section BG.3), is called twice

to build both a hardcore ring descriptor segment and an
Interim Process Data Segment for the unloaded process.
Createseg if successful returns a parameter whose value

is a segment descriptor word which points to the newly
created segment, A segment created by createseg is wired
down and can only be destroyed by an explicit call to
entry point killseg in Segment Control, Createseg can
fail to create a segment if there is a shortage of core
space and in this case it performs an error return to
swap_dbr, :

If both calls to createseg are successful swap_dbr then
proceeds to initialize the two segments by ccpying from
template segments, That is, a template descriptor segment
and a template Interim Process Data Segment (see Section
BJ.5,06) are available from which swap_dbr mere'y copies,
Swap_dbr then sets on the target”s process loading switch,
a data item in the target®s Active Process Table entry,
which defines the target process to be in the state between
loaded and unloaded, Once this has been done the calling
process has fulfilled its obligations to the unloaded
process and swap_dbr now continues with the program outlined
in the basic outline,

If either call to createseg fails swap_dbr must execute

the proper error sequence, The error sequence has two
objectives, The first is that a proper error return be
gieven to getwork., The second is that processor usage
expended in this futile loading effort be properly accessed.
If the second call to createseg fails the now useless '
segment created by the first call must be destroyed by

a call to killseg, Then the Active Meter Table index

of a special "idle time" account is entered into the Processor
Data Block of this pirocessor, This account is only charged
whenever swap_dbr is unsuccessful in a loading operation,
Swap_dbr then performs an error return to getwork, If

MULTICS SYSTEM-PROGRAMMERS” MANUAL - SECTION BJ.5.0t PAGE 8

the first call to createseg fails then all that needs
be done is to enter the "idle time" account number in
the Processor Data Block and perform the error return
- to getwork,

To tabulate the extra steps taken in swap_dbr by the calling
process:

2.01, The target”s not loaded switch is tested. If
it is off (the target is loaded) go to step 3 of the basic
outline, ’

2.02. Entry point createseg is called to create an.
empty wired down segment large enough for a hardcore ring
descriptor segment. An error return from createseg goes
to step 2.07. ’

2,03, Createseg is called again to create an empty
wired down segment large enough to contain an Interim
Process Data Segment., An error return from createseg
goes to step 2,06,

2,04, The target’s process loading switch is set on
and the contents of the template descriptor segment and
the template Interim Process Data Segment are copied into
the two newly created segments,

2.05, Go to step 3.

2,06, Entry point killseg is called to destroy the
segment created in step 2,02,

2.07, The Active Meter Table index of the special
""idle time" account is assigned as the account to which
current pr cessor usage should be charged.

2 .08, Error ret-rn to getwork,

Now let us consider the additional steps taken by the
target process in swap_dbr to enable loading of processes,
(These steps can be inserted betwsen steps 11 and 12 of
the basic outline, The second half of swap_dbr, with
these add tions, is illustrated in figure 3,) These steps
are only taken by the target if the target is unloaded.

Once the target process is in control and after it has
taken care of the housekeeping tasks described in the

basic outline, the target determines whether it is unloaded.
If it is, then it must restore itself to its previous

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BJ.5.0t PAGE 9

loaded state before attempting to return to whatever it
was doing the last time it was running. A process restores
itself by loading itself (i.e., its Process Data Segment)
and by recreating the hardcore descriptor segment that
it had before it was unloaded. These two steps are handled
in two distinct subroutines that are called from swap_dbr.
Respectively they are, entry point pbm in the Process
Bootstrap Module (see Section BJ.5.03) and entry point
overlay (section BJ.5.05).

{
Specifically the entire procedure is as follows. If the
target process finds its not loaded switch on it turns
the switch off and calls entry point pbm in the Process
Bootstrap Module, The Process Bootstrap Module basically
restores the process” Process Data Segment to wired down
core, (This module also restores to wired down core all
non-standard versions of hardcore supervisor segments
that this process uses, However this added complexity
can be ignored by the reader since the Process Data Segment
is an example of a special hardcore supervisor segment
that this process uses, Everything done for the Process
Data Segment is repeated for each other special segment
and therefore the entire mechanism is revealed, Normal y
a process uses no other special segments. See Section
BJ.5.03 for a complete description of the Process Bootstrap
Module,) One point should be noted when discussing the
retrieval of the Pro ess Data Segment, Hardware and software
restrictions in Multics impose a constraint on all processes
executing on a processor in the System, This restriction
is that at a known (and constant from process to process)
segment number in th address space of the process, there
exists a wired down stack that is usable to store machine
conditions at fault and interrupt time. In the loaded
process this stack is the Process Concealed Stack contained
in the Process Data Segment. That is, the descriptor
segments of all loaded processes have in the same relative
location a segment descriptor word that points to their
Proce s Data Segment. For simplicity let us suppose that
this segment descriptor word is the jth such descriptor
word, (I.e,, this segment iIs segment number j,) In the
loading process this wired down segment is the Interim
Process Data Segment which means that all loading processes
access their Interim Process Data Segment as segment number
j+ Therefore in order for a loading process to restore
its Process Data segment to core, while retaining its
Interim Process Data Segment, it must retrieve the actual
segment by giving it a segment number different than j.
(Similarly in retrieving any other special segments, a

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BJ.5.01 PAGE 10

process must retrieve each by a segment number distinct
from that of the segment which the special segment is
meant to replace.) For simplicity let us say that the
Process Data Segment is retrieved as segment k.

Let us rephrase the above and continue, If swap_dbr determines
that the target:is unloaded, it calls the Process Bootstrap
Module to load the Process, Return from this module implies
the process is completely 1oaded That is, its Process

Data Segment and any other spec1a1 segments this process
uses are in wired down core, However the segments have

been assigned segment numbers different from those of

the segments they are meant to replace, In the case of

the Process Data Segment, it has been assigned segment
number k, while it is meant to replace the Interim Process
Data Segment now known by segment number j.

In order to resolve this question of segment numbers
over]ay is called, Basically all this procedure does

is to overlay the segment descrlptor words for all special
segments into the locations in the descriptor segment
currently occupied by the segment due to be replaced,

In the case of the Process Data Segment, overlay will
plck up the segment descriptor word located at location

k in the descrlptor segment and deposit it into location
Jj, thus wiping the Interim Process Data Segment out of
the address space of the process., In order to retain

a handle on the Interim Process Data Segment, the segment
descriptor word for the segment is saved before the call
to overlay, On return from overlay, entry point killseg
is called in order to destroy the now useless segment,

Overlay is called using the Process Concealed Stack, therefore
before the call swap_dbr switches stacks from the Interim
Process Concealed Stack, Once the stacks have been switched,
swap_dbr stores the needed segment descriptor word in

the Process Concealed Stack and then calls overlay. On

return from killseg the entire operation is complete and

the target can reset its lecading switch.

Actually one small point has been neg]ected in the above,
This point has to do with the interaction of subroutine
quit (see Section BJ.3.03) and processes that are 1oad1ng,
Procésses that are loadlng cannot be unloaded, This is
because these processes have data in segments (for example
the Interim Process Data Segment) which cannot be paged
out because they have no corresponding file in secondary
storage. (Quitting a process stops it from executing indefinitely,
If a loading process were stopped indefinitely its unpageable

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BJ.5.0T PAGE 11

segments would remain in core indefinitely, Therefore

it is necessary to delay quits meant for a loading process
until the process is completely loaded, This is done

by special considerations in subroutlne quit and swap_dbr,
Quit on being ca]]ed to quit a loading process mere]y
sets on the process” quit waiting switch, a data item

in the process” Active Process Table entry. Swap_dbr

for its part tests the quit waiting switch upon changing
the target process® state from loading to loaded, If
swap_dbr finds the quit waiting switch on it turns it

off and itself calls quit for the target process., That
iIs the target process calls to quit itself,

Regrouping and tabulating the entire extra sequence contained
in the second half of swap_dbr:

11.01 The target”s not loaded switch is tested, If

it is off go to step 12, -
11,02 - Turn off the target”s not loaded switch,

11.03 Call entry point pbm in the Process Bootstrap
Module, :

11.04 Switch stacks so that the Process Concealed
Stack iIs being used,

11.05 Store the segment descriptor word of the Interim
Process Data Segment into the current stack,

11.06 Call overlay,

11.07 call killseg pa551ng the stored segment descriptor
word as an argument

11.08 Turn the target®s loading switch off.

11.09 The target s quit waiting switch is tested,

If 1t is off go to step 12,

11.10 Turn off the target’s quit waiting switch,

11.11 Call subroutlne quit passing as an argument

the target”s Active Process Table index. (i.e,, the target
calls quit for itself,) :

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BJ;5.01' PAGE 12

Complete Specification of Swap-dbr

With several processes possibly executing in the Process
Exchange concurrently, steps must be taken to coordinate
their actions, In particular, two general steps have
been -taken, First certain interlocks and switches have
been established in the Process Exchange data bases.

By observing common rules about the interlocks and switches,
the various modules are able to guarantee the integrity
of the data with which they deal, Secondly, at certain
well defined points while some of these interlocks are
set, the processor referencing the locked data must be
masked against all 1nterrupts This is to prevent the
possibility of putt1ng a processor into an infinite loop.
(For a complete discussion of coordination in the Process
Exchange, see section BJ.6.)

In swap_dbr several such coordination actions appear.
In particular, two data switches, not previously mentioned
in this document, are reset in swap_dbr and two interlocks

are encountered while swap_dbr goes about the tasks previously

described, The two switches not mentioned are the calling
process’ intermediate-state switch and the target”s chosen
switch, Both of these data items are per process switches
which reside in the respective Active Process Table entries,
The two interlocks are the ready 1list lock, an interlock

on the entire ready list, and the process state lock of

the target process, a per process interlock which controls
access to that process® Active Process Table entry,

Before proceeding, let us look at:the four data items
themselves., The intermediate-state switch of a process

if on indicates that the process may be 'executing" even
though its Active Process Table entry indicates that the
process is either ready or blocked, Because a process
cannot redefine its execution state and stop executing
instantaneously, such an intermediate state is unavoidable,
The intermediate~state switch is used merely to indicate
when this is the condition of the process. A process

turns on its intermediate-state switch whenever it enters

Asubroutlnes block or restart, The switch of the calling

process in swap_dbr is turned off by the target almost
immediately aFter the 1dbr is executed, That is, the’
calling process” intermediate-state sw1tch is turned off
after it is out of this intermediate state,

The chosen switch of a process can only be on if the process
is on the ready list. If on the switch indicates that
the process has already been chosen to run and should

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BJ.5.01 PAGE 13

not be considered a suitable candidate for running. The
switch of a process is set on in getwork when getwork

chooses this process. This process then becomes the target
process in swap_dbr and the switch is reset when the target
removes itself from the ready list. This structure, of
getwork choosing processes and swap_dbr removing them

from the ready tist, enables getwork to accept an error-return
from swap_dbr w1thout having to place the intended target
process back in the ready list.

The ready list lock is an interlock which simply controls
access to the entire ready list. The ready list may not

be referenced by a process unless the process has already
set the lock, The ready list lock, .in_ the jargon of the
Multics File System, is a loop lock. That is, a process
trying to set the lock loops until the lock is setable.

A11 interrupt handlers must be able to use the ready list
and therefore all interrupts must be masked wnenever the
ready list is locked. This masking is necessary to prevent
putting a processor intc an infinite loop.

The fourth and final data item is the process state lock

. of a process., This per process interlock controls access

to data items contained in the Active Process Table entry
in which the interlock itself is located. 1In particular,
swap_dbr uses three of the data items controlled by this
interlock: the ready switcn, the running switch, and the
quit waiting switch. In general, a process may only Tlook
at the controlled data items belong1ng to itself or another
process if it has already locked this interlock. This
interlock is also a loop lock and again all interrupt
handlers must be able to lock the process state lock of
any process, Hence all interrupts are masked in swap_dbr
whenever the target”s process state lock is locked.

In the basic outline of swap_dbr it was assumed that all
interrupts were masked throughout the entire execution

of the routine. Now we only assume that all process interrupts
are masked througnout the entire routine while more encompassing
masks are used for limited portions. The reascn for masking
process interrupts is to prevent swap_dbr from being.entered
recursively. Recall that all process interrupts have

as their end result the calling of swap_dbr by the interrupted
process., Therefore, acceptance of a process interrupt

in swap_dbr would indeed mean a recursive call to swap_dbr.

In contrast, system interrupts need only be masked while
critical data items are locked.

N

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BJ.5.01 PAGE 14

Finally we are in a position to completely specify swap_dbr.

First we will describe the strategy of setting the two

- switches and then we will describe the interlocking scheme,
A1l additions entailed by this specification occur in

the second half of swap_dbr and therefore figure 2 is

still accurate as an illustration of the first half of

swap_dbr,

Immediately after the target loads base register sp (step

9 of the basic outline) the target turns off the intermediate-
state switch of the ca111ng process. The other switch,

the target’s chosen switch, is reset immediately after

the target removes itself from the ready list (step 11

of the basic outline)., The target”®s process state lock

is encountered when the target redefines its state from

ready to running and also when the target tests its quit-waiting
switch., Finally, the ready list lock is encountered when

the target removes itself from the ready list,

Swap_dbr is completely tabulated below, The level of
qualification of the step number indicates when the step
was added. That is, step number x is in the basic outline,
step number x.xx was added to enable loading, and step
number x.,xx,xX was added in the final specification,

1. Processor usage is accounted for,
2. Timer runout interrupts are drained.
2,01 The target”s not loaded switch is tested.. If it

is off (the target is loaded) go to step 3.

2.02 Entry point createseg is called to create an empty
wired down segment large enough for a hardcore ring
descriptor segment, An error return from createseg
goes to step 2,07, :

2.03 Createseg is called again to create an empty wired
down segment large enough to contain an Interim
Process Data Segment, An error return from createseg
goes to step 2.06,

2.04 The target”s process loading switch is set on and.
the contents of the template descriptor segmont and
the template Interim Process Data Segment are copied
into the two newly created segments.

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BJ.5.01 PAGE 15

2,05
2.06

.~ segment

2,07

9.

9.00.01
9.00.02

9.00.03
10.

10.00.01
10.00.02
11,

Go to step 3.

Entry point killseg is called to destroy the

created in step 2.02,

The Active Meter Table index of the special overhead

account is assigned as the account to which current
processor usage should be charged,

Error return to getwork,

The timer register is reset with a new value and a new
account number is established, _

Quit interrupts are drained,

The calling process stores the current value of base
register sp into its Process Data Block,

The segment descriptor word of the Processor Data
Segment for this processor is loaded into the A-
register, It is obtained from the calling process”
descriptor segment,

The 1dbr instruction is executed., The operand of
this instruction is the absolute address of the base
of the target”s descriptor segment,

The A-register is stored into the target”s descriptor
segment, .

Base register sp is loaded with a new value, This
value is obtained from the current (i.e., the target’s)
Process Data Block,

Reset calling process’ intermediate-state switch,

The present processor mask is saved and the processor
is masked against all interrupts,

The target’s process state lock is locked,

The target’s ready switch is set off and its runnlng
switch is set on.

The target’s process state lock is unlocked,

The ready list is locked,

The target removes itself from the ready list.

" MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BJ.5.01 PAGE 16

11.00.01
~11,00,02

Thebready Tist is unlocked,

The previous processor mask is restored,

11.00,03 The target's chosen switch is turned off,

11,01

11.02 -
11,03
11.04

11.05

11.06
11,07

11,08
11.08.01
11.08.02
11.09

11.10
11.10.01
11.10.02
1.1

12.

The target s not loaded switch 1s tested, If it
is off go to step 12, :

Turn oﬁf the target”s not loaded switch,
Call entry point pbm in the Process Bootstrap Module,

Switch stacks so that the Process Concealed Stack
is being used,

Store the segment descriptor word of the Interim
Process Data Segment into the current stack,

Call overlay.

Call killseg passing the stored segment descriptor
word as an argument, : '

Turn the target’s loading switch off.

Save the present mask and mask all interrupts,
The target’s process state lock is locked.

The target”’s quit wa1t1ng switch is tested, If it
is off unlock the target”s process state lock and
restore the previous mask and go to step 12,

Turn off the target®s quit-waiting switch,

Unlock the target’s process state lock,

Restore the previous mask,

Call subroutine quit passing as an argument the
target’s Active Process Table index, (i.e., the

target calls quit for itself,)

Swap_dbr returns to its caller,

MULTICS SYSTEM-PROGRAMMERS ©~ MANUAL SECTION BJ.5.01 PAGE 17
[rapu

One last thing should be noted at this point. The 1dbr
instruction may only be executed in master mode, 1In order

to isolate this from the rest of swap_dbr, the actual
instruction is contained in a distinct master mode segment,
Actually, steps 5 through 9 are all contained in the master
mode routine, ldbrl (see section BJ.5.04), since these

steps must be executed while the processor is inhibited.

In this way, the rest of swap_dbr can be executed in slave

mode., Figures La and kb provide a complete illustration
of swap_dbr,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BJ.5.01 PAGE 18
‘Call swap dbr (K) ‘ ’ : :

u

R
,//
call

- meter_cpu

P

drain
timer runout
interrupts

!

Reset timer
and establish

new account
. number

!

Drain
quit

interrupts

A

Store Sp
in Process

Data Block

lda the sdw

of the pro-

cessor Data
segment

set process Remove K
—»1 K to —— from ready
running list

sta into

Descriptor [P load Sp
- Segment

A

Figure 1. Basic Outline of Swap_dbr. return

MULTICS SYSTEM- PROGRAMM*RS MANUAL

store account
of overhead

go to
error-return

error
return

account intof— g~

Call createse
for descrip-

to segment

SECTION BJ.5.01

 PAGE 19

while in process, call swap-dbr (K,error_retur

No

rall createse
for interim
Process Data
Segment

Y

call
meter Cpu

13

Drain
‘|timer run-

Initialize
descriptor seg

ment and Inten
Hm Process

Processor Datgd from

A

’ error
Call Killseg | return
for descrip-
from

to segment createseg

Figure 2.

of processes,

Data Segment

Set Process

for K

loading switd

-

Flow dlagram of first half of
swap_dbr with additions to enable loading

h

reset
timer_ and |.
establish

new accourjt

drain
uit
1nterrupqs

Y

store
value of

Sp

1

1da with
sdw of

rocessor
ata seg.

Y

1dbr (K)

!

tut interrﬂ

pts

MULTICS SYSTEM;PROGRAMMERS' MANUAL SECTION BJ.5.01% PAGE 20

ldbr(targef)

\
sta into

descriptor
segment

| | }

loéd
SP

i
set target

to
funning
remove
target fm
ready list
|store sdw, switch call turn off
52&5‘;5%2#; stacks [*] PBM " not loadd
Seement ed switch
call
overlay
1 —_—
call turn off call |
. quit —quit(tar- : -
killseg waiting . get) ' l
turn off 4 '
loading l h<:~* return *j>
switch ‘ —

Figure 3. Second half of swap_dbr with additions to enable
loading of processes., The aditions to the basic outline are
enclosed in the dashed line.

{”53 R » e

%0 to
error-return

store account

of overhead error call .

account into feturn

Processor - creat§eg for - No

Data Segment from descriptor :

Lreateseg| Segment
|
timer and

<- establish

Call Killseg error | call

for descriptof return [Createseg for
segment rom = [interim Proces

' createsegData Segment

Initialize
descriptor
and interim
. Process Data

Set Process
loading switch
for K

Segment

new account

Drain
quit
interrupts

|

Call
1dbrl(K)

Figure La, 'CompIete.speciFication of first half of

swap_dbr,

MULTICS SYSTEM-PROGRAMMERS' MANUAL 'SECTIQN BJ.5.01 PAGE 22

reset | {save mask | [lock tar- set tar—| unlock
, i:ir].:;;d-s- pimask all gets pro-{ gl got to | state
ate state interrupt ceggkstate running lock
lock
feady
Temove
fasgec
ready list
unlock
.ready
list
restore
previous
mask
s {
o . . reset
y - target's
chosen swigch
Call %ggr%ngd¥ | switch call turn off
overlay a2t coso. & SO ot R not _ loadec oaded3
Data Segmgnt | stacks _ Pbm switeh
¥ -
Call
killseg
turn off
loading
switch
y
save mask turn off unlock restore call
Mask all quit - state —»1 previous ¥ quit
Jfinterruptefs | waiting lock mask. - (Target)
-;225e is .| wunlock | [restore - t y .
' B state [P oy ; "
) previous return
£y ook lock . mask - -

Figure Lb. Comblete speéification of second half of
swap_dbr. ‘

L

