
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.02 PAGE i

Identification

The Event Channel Table (ECT)
Michael J. Spier:

Purpose

Published: 12/09/68
(Supersedes: BQ.6.03, 07/24/67)

The function of the Interprocess Communication facility
(I PC) is to "keep book" on a 11 the event messages received
by a process. A process knows that it is ~oing to receive
event messages of one or more "types" (or ' nature" or
11 meaning11) and so it gives each type of event a unique
event channel~- Associated with each event channel
name is an event channel which is a mail box for events
of that specific kind.

The IPC sees to it, when one process (sending process)
sends an event message concernin~ a given event channel
name to some other process (receiving process), that at
some point the event message gets transcribed into the
receiving process' event c~annel where it can then be
retrieved by it.

This section describes the event channel and the table
in which it resides, named the event channel table (ECT).

The event channel

An event channel is a mailbox into which the IPC puts
al1 event messages associated with one event channel name.
As mentioned above, the definition of "event channel name"
is rather vague. It applies to one or more event messages
to which the process wishes to associate a common significance.
The events associated with those event messages do not
necessarily have to be observed i:1 the same manner. For
example, the process may have an event channel named "logout"
into which messages will normally be put by the Shell,
however the Device Manager may signal over the same event
channel in case of a device-hangup, or the system-shutdown
procedure in case of a system shutdown, or the accounting
module in the case where the process might have run out
of resource allotments. And yet, to the receivin~ process
any of these event messages, regardless of its origin,
would simply indicate that the process' logout procedure
has to be invoked.

MULTICS SYSTEM ... PROGRAMMERS' MANUAL SECTION BJ.10.02 PAGE 2

The event channel name, then, is a symbolic name associated
by the process with a group of events; it is meaningful
only within the receiving process. Event channel names
are unique within a process, and uniquely identify the1r
associated event channel. ·

An event channel is an entry in'an event channel table;
it is the head of a queue (threaded list) of event message
entries which are also allocated within the same ECT.

Normally, when a process cannot proceed with its execution
until some event has happened, it interrogates the associated
event channel to see whether or not that event has already
occured. If yes, it is satisfied and resumes its execution,
else it cal ls the Traffic Controller's entry point block
and blocks itself until an event message is received by
ito An event channel which is explicitly interrogated
in this manner is said to be an eyent-»'s.11 channel • 7 .

Another possibility exists, by which a process can set
up an event channel and specify that whenever an event
message is received over that channel a call should automatically
be issued to some procedure known as the channel's associated
procedure. Such an event channel is said to be an event-cal 1
channelo Briefly, event call channels allow a limited
kind of "multiprogramming'' to be done within a process.

An event channel entry in the ECT has the following structure:

dcl 1 event_channel based(p),
2 type fixed,
2 thread, ·

3 forward b it (18) ,

3 backward bit(18),
2 name fixed bin(71),
2 flags,

3 ev_call bit(1),

3 inhibit bit(1),

3 used bit(1),

2 t ra i 1 er bit (18),

2 queue,

3 head bit (18) _.
3 ta i l b i t (1 8) ,

2 f i 1 ler fixed;

/*type~1*/

/*forward thread in
event call list*/

/-,\-backward thread*/
/*event channel name*/
/*various indicators*/
/*O=event wait channel,

1=event call channel*/
/*1=channel inhibited.

this flag is set by
i pc$cutof f-/c /

/*1=channel has been
si;1na l led over*/

/*pointer to event call
trailer.,"/

/*cha~nel's event message
queue-;\-/

/*head of queue*/
/*tail of queue*/
/*padding to make entry

8 words.,"/

..

MULTICS SYSTEM•PROGRAMMERS' MANUAL SECTION BJ.10.02 PAGE 3

Following is an itemized description of the event channel
structure:

~

thread

~

flags

trailer

queue

filler

to identify the various entries in the ECT. An
event channel always has type=1.

is used only if this is an event call channel, to
thread it into the event call list: the list is
double-threaded using forward and backward pointers.

this is the event channel's name by which it is
retrieved in the ECT.

event call this flag is set to "O"b for an event
wait channel and to 11 111 b for an event call channel.

inhibit sometimes a user may wish to disregard
arriving event messages (without, though, forgetting
about them). When this flag is 11 1" b then the
channel is considered to be ''empty" for reading
purposes. It has no effect on the reception
of event messages. ·

used this flag is set to 11 1"b whenever an event
message _is appended to the channe 1; it is never
reset to zero.

It is useful in determining (mainly for debugging
purposes) whether or not an event channel has
ever been signalled over.

An event call channel contains more information
than does an event wait channel. When the ev_call
flag is set to" 1"b, this item points to an ECT _.
entry known as event wJ., trailer which contains
the additional information.

/

this item points to the queue of event messages
which are appended to the event channel (11 in the
mailbox"). In order to preserve the sequence of
events, messages are appended to the tail of the
queue and removed off its head.

An event channel entry, like all other ECT entries
is allocated in the ECT's entry table, which is
an array of fixed length items. Currently, the
size of an ECT entry is 8 words long and all
shorter entries are padded accordingly.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.02· PAGE 4

channel-1 and channel-2

Every event channel table contains two event channels
named channel-1 and channel-2. These channels are created
during £CT initialization time; .the only difference bet'Jl.leen
them and regular event channels is that their event channel
names are !lQl unique to a process. The event channel
names of both channels are constant within a given ring
and known to all processes. A process that knows its
own ring n channel-1 name# knows every other process'
ring n channel-1 name. Thus processes can communicate
with one another over these two channels without first
having to establish any basic interprocess communication.

These channe 1 s are very usefu 1 for "broadcast'' type events
where the si~nalling process knows about the receiving
processes# without otherwise interacting with them. A
typical user of these channels is the locker module# which
needs to communicate with a process whose ID it foµnd
in a lock-word but about which it otherwise knows nothing.

The event call trailer

An event call trailer contains all the additional information
required by an event call channel in order to be.able
to issue a call to its associated procedure.

An event call trailer has the following structure:

dcl

~

thread

1 event call trailer
2 type fixed:-
2 thread#

3 forward bit{18)
3 backward bit(18~#

2 data_ptr pointer#

based(p) #

2 procedure_ptr bit(18)#

2 priority fixed#

2 fi11er(2) fixed;

/*type=2*/

/*unused'>"/
/*backpointer to event

channel,"/
/*pointer to associated

data*/
/*pointer to associated

proc ent ry,'r /
/*relative location in

ev-ca l l 1 is t* /
/*padding*/

an event call trailer always has type=2.

forward is unused

backward backpointer to the event channel entry

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.1O.O2 PAGE 5

~ J21t every event call channel may be associated with
some data. This association is established during
channel creation time and remains static. This
pointer may point to some data area, or to some
arguments or possibly to an entry in some table,
etc. It is passed as argument to the associated
procedure to distinguish between more than one
channel associated.with a single procedure •

procedure

priority

filler

.12.lJ: this item points towards s.n. associated
procedure enlry in the ECT. More than one event
channel may e associated with a single procedure
which may, in turn, make free use of IPC. This
may result in an error condition by which the
procedure is invoked recursively by the !PC (because
more than one event is pending in an- associated
event call channel). To insure against such
recursion,. every associated procedure has its
separate entry in the ECT which is interrogated
whenever an event call is to be made. In this
way, recursive calls are detected and inhibited.

this number ·specifies the relative location
of this channel's entry on the eyent-~ J.!ll.;
it is assigned by the user in order to define
relative interrogation priorities among his channels,
as the event call list is scanned sequentially
starting with the low-v~lue priority numbers.

padding to make this entry 8 words long.

~ associated· procedure entry

The associated procedure entry has the following structure,

dcl , associated_procedure based(p),
2 type fixed, /*type=3*/
2 thread, /*associated procedure

entry 1 i st*/
3 forward bit(18) /*forward thread*/
3 backward bit(18), /*backward thread*/

2 pointer pointer, /*pointer to procedure's
entry*/

2 inhibit fixed, /*1=procedure is
inhibited*/

2 count fixed, /*number of associated
channels*/

2 f i 1 ler (2); /*padding*/-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.02 PAGE 6

1YJ)_g an associated procedure entry always has type=3.

;hread all associated procedure entries are threaded into the
associated procedure list, which is double threaded •

.Qointer this is a pointer to the procedure's entry pointo

inhibit whenever the procedure is, invoked by IPC, this flag
is set to 1. lPC does not issue an event call to an
inhibited procedure.

count this is a count of the event call channels which are
currently associated with this procedure. When the
count drops to zero then this entry is deleted.

fillgr padding to make the entry 8 words long.

Th~ event messa.ge

The event message contains all the information which is
associated with an evento. Whenever an event is signalled,
an associated event message is appended to the event queue
of the appropriate event channel.

Events are signalled by two modules, hcs_$wakeup and
pxss$dst_wakeup; the first is used for signalling events
which originated in non-hardcore procedures (user-events),
the latter is invoked by the DIM or GIM to signal the
completion of an 1/0. This latter kind of event, named
device signal is characterized by a relative lack of relevant
control informationo The following description points
out the differences between user events and device signals.

An event message entry has the following structure:

dcl 1 event_message based(p),
2 type fixed,
2 thread,

3 forward bit (18)
3 backward bit(18),

2 channel fixed bin(71),
2 message fixed bin(71),
2 sender bit(36),
2 origin,

3 device~signal bit(18),

3 r i ng b i t (1 8) ;

/*type=4*/
/*the event queue thread*/
/*forward thread*/
/*backpointer to event

channe 1-lr/
/*event channel name*/
/*event message*/
/*sending process' ID*/
/*origin of event*/
/*O=user event,

1=device signal*/
/*ring of signalling

procedure.,.,/

the last two items are right adjusted
(packed fixed bin(18))o

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10 0 02 PAGE 7

~

thread

channel

message

send!:;r

origin

an event message entry always has type=4.

the double thread of the event message queue.

The event
directed.
truncated
20 bits).

channel name to which this message is
Device signal messages contain a

event channel name (only the left-hand

a 72-bit message associated with this event. The
sending process may put into this item whatever
information it deems suitable. For device signal
messages, this item contains a right-adjusted device
index.

The ID of the sending process. The device signal
messa~es do have this item, however it is of no
practical value (except perhaps for debugging).

this item describes the origin of the event message.
device signal when this item is non-zero (contains
a right-adJusted 1), the message is a device signal.
When this item is zero the message is a user-event.
ring this item contains the right-adjusted ring
number of the procedure that signalled the user­
event.

Figure 1 shows the layout of the above-described ECT entries.

Figure 2 shows the relationship between the event-call
channel entries, event trailers and the associated-
procedure entry.

The ill b,is.,ts

There are a number of threaded lists running through the
ECT. They are as follows:

event call .J1..tl. all event call channels are threaded
into a list which is sequentially scanned for
interrogation; event call channels are entered into
this list at creation time; their relative position
in the list is specified by their priority number.

associated procedure list When an event call channel is
declared it may be associated with a procedure
which already has an entry in the ECT. Therefore
the associated procedure list is maintained to
allow easy scanning of ail current associated
procedure entries.

MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BJ,1O,O2 PAGE 8

empty .l.J..11 whenever an ECT entry is deleted, if it is the
very 1ast item in the ECT then the ECT is shrunk
by one entry. · However i'f the deleted entry is
imbedded within the ECT then it is put on the
empty list. ·

~ fil
The ECT is decla~ed to be an internal static array in
procedure <ipc>.· There is an ECT per active non-hardcore
ring. The IPC maintains in segment <process info> an ·
array of 63 pointers to the ECT"'s of (potentTal) rings 1-63.
This array is readable in all rings and allows a procedure
in ring n to access the ECTs of rlngs n+1->63,

The ECT consists of three maJor parts,

1 •

2 . .
The: ECT header which contains a number of control
variables as wel 1 as other useful information.

The entry table in which entries are al located.
This table is of variable sizeJ it grows or shrinks
as a result of entry al.location,

The ITT message transcription area which is the area
fo.1 lowing the entry. table, It is always separated
from the entry table by a one-entry buffer zone.

The ECT header contains the fol lowing items:

~ current size (n·umber of entries) of the entry tab le •.
I .

channel count current number of event channel entries.

~ Co}JnS

empty count

current number of non-channel entries.

current number of entries on the empty list.

For debugging purposes, the followi'ng zero check is made by
t he I PC pr i mi t i ve s : ·

size - channel_count .. cell_count - empty_count a 0

free entry pointer· relative pointer to the above1•mentio1ned
one-entry buffer between the entry table and the
ITT transcription zone. '

empty .ll.U relative pointer to tt,e head of the empty list,
When empty_count is zero, this item must also be zero.

head of the event call list.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.02 PAGE 9

associated procedure list
list -

head of the associated procedure

~ Sall £riority this item determines whether event wait
or event call channels should be interro~at~d first.
A non-zero value signifies event-call priority.
This item can be set to either valu~ by means of
special calls to the IPC.

~ calls this item, when non-zero, causes the IPC to
refrain from interrogating its event call channels
(event ca 11 s "masked'') • Spec ia 1 ca 11 s to the I PC
are provided for the setting of this flag.

ill queue this relative pointer points to the base of the
itt transcription area.

next free itt .· this relative pointer points to the first
unused entry in the ITT transcription area; procedure
hcs_$block copies an event message into the
transcription area indirectly through this pointer.

S=hann~l l pointer relative pointer to this EC T's
Channel-1 entry
!

cbann~l z. 12ointer relative pointer to this EC T's
channel-2 entry

channel
I this ring's channel-1 1 name name

channel 2. name this ring's channel-2 name

Special calls are provided to return channel-1 or channel-2
names to the user.

The entry table starts off with length zero. A call to
allocate an entry first tries the empty list. If there
are entrie1s on it, it detaches one and returns a pointer
to it to its caller. If the empty list is empty, then
the entry-table is grown by one entry and the pointer
to it returned to the caller. A call to delete an ECT
entry first compares the pointer to it with free_entry_pointer;
if the entry to be deleted is the last one in the entry
table then' the table is shrunk by one entry. Otherwise
it is threaded onto the empty list. The entry table is
thus ~uaranteed to remain packed at the base of the area
in which the ECT resides. This increases the probabi 1 ity
that the ECT could remain within a single page of core.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.10.02 PAGE 10

The area following the end of the entry table is reserved
for ITT message transcription. When a process returns
from the Traffic Controller's entry point block, it is
given a list of zero or more event messages which are
allocated in the Interprocess Transmission Table (ITT).
The process copies these messages into the ITT transcription
area of the ECTs to which these messages are directed.

Figure 3 illustrates the layout of the ECT.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

THE ECT ENTRIES --

TYPE

EVENT CHANNEL NAME

FLAGS
Off

EVENT WAIT CHANNEL

TYPE 1

THREAD

0

DATA POINTER

PROCEDURE
POINTER

PRIORITY

EVENT CALL TRAILER

B

0

l

2

FIGURE la

SECTION BJ.10.02 PAGE 11

TYPE 1

EVENT CALL LIST THREAD
F I B

EVENT CHANNEL NAME

FLAGS
lff

TRAILER POINTER

PTR 0
EVENT MESSAGE QUEUE

EVENT CALL CHANNEL

TYPE 3

SSOCIATED PROCEDURE LIS

F B

PROCEDURE POINTER

INHIBIT

COUNT

ASSOCIATED PROCEDURE ENTRY

MULTICS SYSTEM-PROGRAMMERS- MANUAL

TYPE 4

MESSAGE QUEUE THREAD
F I B

EVENT CHANNEL NAME

EVENT MESSAGE

SENDING PROCESS

0
VALIDATION

RING

USER EVENT MESSAGE

FIGURE lb

SECTION BJ.10.02 PAGE 12

MESSAGE
F

EVENT CHAN

THREAD

SENDING PROCESS

1

DEVICE SIGNAL MESSAGE

4

MULTICS SYSTEM-PROGRAMMERS' MANUAL SEC T1I:ON BJ. 1 0. 02

THE EVENT CALL CHANNEL

EVENT! EVENT

CALL
EVENT Cli L)CHANNEL LIST ► CALL

► CHANNEL CHANNEL

A B

EVENT

CALL

TRAILER

A

ASSOCIATED
PROCEDURE

LIST

ASSOCIATED

PROCEDURE

ENTRY

p

I

EVENT

CALL

TRAILER

B

POINTER TO

PROCEDURE P

PAGE 13

◄

MULTICS SYSTEM-PROGRAMMERS' t-¼NUAL SECTION BJ.10.02

THE EVENT CHANNEL TABLE

free_entry_p

itt_queue

tr

next free i 'tt - -

..
-.

!

i

ECT HEADER

VARIABLE ...

SIZE

ENTRY TABLE

ONE-ENTRY BUFFER ZONE

ITT TRANSCRIPTION

AREA

1---
~

FIGURE 3

PAGE 14

