
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.1.02 PAGE 1

Pub 1 i shed: 10/01 /68
(Supersedes: BJ.1.02., 07/19/67)

Identification

The Active Process Table
Robert L. Rappaport., Michael Jo Spier., A. Evans

Purpose

The Active Process Table (APT) is a systerTPNide data base
in segment <tc_data>J the Traffic Controller maintains
an APT entry for every active (see BJ.0 and BJ.6.00) process
in the system. A process' APT entry contains all the
lnformaton about that process that needs be publicly known
within the Traffic Controller.

The Traffic Controller also maintains a number of lists
threaded through the APT., namely the empty-list., the
running-list., the ready-list., the loaded-list and the
various event-lists.

~- A PT entry

Fol lowing is an itemized description of an APT entry.,
preceded by the entry's EPL declaration.

declare 1 apt_entry based (p).,

2 thread.,

3 forward b i t (18) .,

3 backward bit (18).,

2 level fixed bin (17).,

2 state fixed bin (17).,

2 timer_residue fixed bin (35).,

2 time_last_run fixed bin (71).,

2 process_id bit (36).,

2 load_state fixed bin (17).,

2 wakeup_waiting bit (1).,

2 stop_pending bit (1).,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJo 1 .02 PAGE 2

2

2

2

2

2

2

thread

level

state

time_residue

processor_required fixed bin (17).,

dsbr_value bit (36),

pstep bit (18),

class fixed bin (17),

event_thread,

3 itt bit (18).,

3 dst bit (18),

ips_signal char (4);

an APT entry is always threaded into some list;
the threads are pointers relative to the base 6f
<tc_data>. Unused pointers are reset to zero.

this number specifies the ready-list queue
into which this process belongs (see ready-list
be low.)

is the process' execution state and can assume
one of the following values:

0 = empty entry

1 = process running

2 = process ready

3 = process waiting

4 = process blocked

5 = process stopped

whenever the processor is given away., the timer
register gets stored in this item., to be restored
when the process is run again.

time last run is a clock reading taken whenever the process
gives its processor awayo - -

process_id the process ID

.:-----

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.1.02 PAGE 3

load_state this variable reflects the process' loading
state as follows:

0 = empty entry

1 = process is unloaded

2 = intermediate state, process being
loaded/unloaded

3 = process is loaded, may be unloaded

4 = process is eligible

wakeup_waiting is the process' wakeup-waiting switch (see BJ.3)

stop_pending is the process' stop-pending switch (see BJ.4)

processor_required certain processes can execute on specific
processors only; if this item is non-zero,

dsbr_value

pstep

class

event_thread

filler

the process will be run only on the processor
specified.

this is the value loaded into the DBR by
subroutine swap_dbr (see BJ.7)

relative pointer to the process PST entry,
needed for process loading/unloading.

is the process' class as follows:

0 = empty entry

1 == user process

2 = system process

3 = hardcore process

4 = wired-down p~ocess

5 = idle process

relative pointer to head of event_queue
(see BJ.3)

to make the entry an even 16 words long

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.1.02 PAGE 4

~ lli 1i sts
As mentioned above, the traffic controller maintains a
number of lists threaded through the APT, and every APT
entry is always threaded into one of these lists. The
APT lists (except event lists) must each satisfy one or
more of the following requirements:

1. It must be possible to thread an entry into either
the head or tail of the list.

2. It must be possible to thread an entry into either
the head or tail of a subset of the list (queue)

3. A queue within a list must be directly accessible
(without having to follow the list's thread)

In order to implement these requirements, the APT contains
a number of dummy entries, named "sentinels'', which consist
of only two items as declared

declare 1 sentinel based (p)

2 thread,

3 forward bit (18),

3 backward bit (18),

2 dummy_level fixed; J,'clevel=-1,'c/

and which the APT primitives recognize by their negative
level number. These sentinels are threaded into the lists
as if they were normal APT entries, yet may be directly
accessed.

The empty J.i§.1

This is a threaded list of all unused APT entries. It
is initially set up by subroutine tc_data_init. It is
flanked by two sentinels which constitute its first and
last entries and which can be accessed by referencing
<tc_data>f[empty_q] and <tc_data>r[empty_q]+2 respectively.

The ready 1 i st

The ready-list is the list of all processes which would
be running, had a processor been available to them. Whenever
a process gives its processor away, it selects the next
process to run off the top of the ready list. The ready list

...,,,.

,,,.......
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJo 1 .02 PAGE 5

is broken up into a number of sublists (queues) which
are separated from one another by sentinels. These queues
are used by the scheduler (see BJ.5) to thread different
processes into different, pre-determined, relative locations
within the ready list. There is a sentinel in front of
each queue (and therefore in the back of each queue as
well), and in addition there is one at the end of the
ready list (for n queues there are n+1 sentinels.)

Sentinel i can be accessed by referencing <tc_data>I
[ready_q]+2*(i-1). Putting an entry onto the ready list
at the head of the third queue means threading it into
the list directly following the third sentinel. Similarly,
putting it at the tall of the third queue means putting
it in front of the fourth sentinel. Searching the ready-list
for the highest-priority process means finding the first
non-sentinel entry on the list. Primitives are provided
in procedure <pxu> to do all the threading and unthreading
of the above-mentioned lists. (see BJ.8)

.Il)g running list

This is a list of all currently running processes. It
is an array of entries, each one consisting of a relative
pointer to an APT entry and a pre-emption flag (to be
discussed below); each entry is associated with one processor
and is ~ccessed by using the processor number as an index
into the running list. The size of the array is the
maximum number of processors possible (8).

Whenever a process is given a processor to run on, it
is unthreaded from the ready list and put on the running
list; the relative pointer to that process' APT entry
is put in the running-list slot corresponding to the
processor, and the associated pre-emption flag is reset
to II off'.' •

Whenever a running process is pre-empted, its pre-emption
flag is set to "on" to prevent possible recursive pre-emption.
This is necessary because it is possible for more than
one high-priority process to be made ready while an equal
number of low-priority processes is running 0 Without
this flag all the high-priority processes may choose one
and the same target-process for pre-emption even though
all of the low-priority processes should have been pre-empted.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ 0 1.O2 PAGE 6

The loaded list

This ,.s a list of all loaded processes. It is an array
of relative pointers into the APT entries of all loaded
processes. This array is dynamically allocated and initialized
by tc_data_init 1 to a size corresponding to tc_data$max_loaded
(consequently, the maximum number of loaded processes
in the system must not be dynamically increased). Whenever
a process gets loaded, it is entered into this list; it
is out of this list that candidates for unloading are
selected.

The event lists

Waiting processes are threaded into event lists, the heads
of which are in the PWT. Each event list is associated
with a certain event name; all the processes waiting for
event 'A' thread themselves into the list associated with
event 'A'. A process that detects the occurance of event 'A'
notifies all the processes which are threaded on event
list 'A'. The association between event-name and event-list
is made in the PWT. (See BJ.2)

