
TO:
FROM:
SUBJ:
DATE:

MSPM Distribution
M. Turnquist
BG.B.02
02/07 /68

The attached revision of BG.B.02 reflects various changes
which have been made to several of the general user
primitives that come under the directory supervisor.

status and 11st dir: the notion of the "protection
1 ist" has been radically altered and the
"gate list" removed from the branch, leaving
only the II ring brackets" (access bracket and
call bracket) in the branchJ therefore, the
declaration of the arrays allocated in the
caller's area has been changed slightly.

readacl and writeacl: the order of implementation
has been modified. Also, the structure
which is returned to the user from readacl,
and input by the user to writeacl, ls given.

appendb: Appendb has been reorganized. Appendb
itself now Just sets up the defaults for
current length, bit count, ring brackets
and usercode. Then appendbx is called.

Appendbx does all that appendb used to do,
but has an extended argument 11 ~t 1;0 inc 1 ude
the arguments listed above. The code has
been expanded to handle these arguments.

This change only affects those users who
wish to specify current length, bit count,
ring brackets or usercode other than the
defaults. Most users will only reference
appendbx through appendb.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.02 PAGE 1

Identification

Pub 1 i shed:
(Supersedes: BG.8.02,

BG.8.02,
BG.8.02,

Directory Supervisor, General User Primitives
C. Ao Cushing, M. C. Turnquist

Purpose

02/07 /68
07/14/67,
03/01/67(
05/24/66)

The directory supervisor provides the primitives for
manipulating directory entries and decides the permission
needed to carry out the requested operation from the intent
of the ca 11 er.

Primitive

The primitives of the directory supervisor which are callable
by the general user have one of four intents (read, execute,
write, append) with respect to the directory containing
the given entry and possibly to the entry itself. The
following is a list of the primitives with their normal
intent, i.e., the mode needed by the process on whose
behalf the primitive is being invoked.

1 •
2.
3.
4.
5.
6.
7.
8.
9.

10.
1 1 •
12.
13.
14.

1 •

list dir (read)
status (read or execute)
chname (write)
delentry (write)
readac 1 (read)
wri teac 1 (write)
set$bc (execute; write in branch)
set$consistsw (write)
a. set$copysw (write)
b. set$relatesw (write)
set$rd (write; write in branch)
appendb, appendbx (append)
appendl (append)
setml (write)

,movefile (execute1 read and write in old branch,
append in new branch)

list di r

The primitive list dir itemizes the contents of each branch
and link in a directory.

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BG.8.O2 PAGE 2

call list_dir (dir, user_area, branchp, branchct, linkp, linkct,
code);

de 1 di r char(*), /* symbolic path name of the directory
to be listed */

user_area area((*)), I* an area of storage provided by the
caller into which the information from
each branch and link in dir is put
by directory supervisor*/

(branchp, linkp)ptr, /* pointer to an array in the area
containing selected information from
each branch (link) in dir, returned
by directory supervisor*/

(branchct,linkct) fixed bin(17), /* number of branches
(links) in dir, i.e. size of the
array pointed to by branchp (linkp),
returned by directory supervisor*/

code fixed bin(17)J /* if non•zero, it represents the
code of an error detected by the
file system*/

The functions 9f directory supervisor for the primitive
list_dir are to decide the permission needed (read) by
the user in dir and if the user has this permission, to
go through the branch and link slot tables to get at each
branch and link, and to call the directory maintainer
primitive packer to store selected information from each
entry into an array allocated by list dir in the area,
user area. After all branches and links are listed control
is returned to the caller.

2. status

The primitive statys itemizes the contents of one specifically
named entry in a g v~n directory.

call status (dir, entry, chase, type, user_area, entryp, code);

dcl dir char(*),

entry char(*),

/* symbolic path name of the
directory *I

I* symbolic name of the entry *I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.02 PAGE 3

type fixed bin(2),

chase fixed bin(1),

/* a two-bit flag indicating whether
entry is a directory (2) or non­
directory (1) branch or a link
(0), returned by directory supervisor*/

/* a switch when •1 indicates that
the status of the branch effectively
pointed to by entry is desired *I

user_area area((*)), I* an area of storage given by
caller in which contents of entry
are put by directory supervisor*/

entryp ptr,

code fixed bin(17)J

/* pointer to an array in the area
containing selected information
from entry, returned by directory
supervisor*/

/* if non-zero, it represents the
code of an error detected by the
file system*/

The caller needs the read permission if en2rv contains
the slot number of the entry to be itemize else the read
or execute permisssion if entry contains the name of the
entry to be itemized. Directory supervisor calls the
primitive findentry in directory maintainer to find entry
in directory g1.r_ and calls packer to store selected information
from entry into an array which was allocated br status
in the area, user_area. If this area is not b g enough,
the call to packer is omitted. In this case, the caller
merely ascertains whether entry exists or not and what
type it is. Directory supervisor then unlocks entry (it
had been locked by findentry) and returns control to the
caller.

The following is the declaration of the arrays allocated
in the caller's area by list_dir and status:

/* array of branches*/

dcl 1 branches (branchct) ctl (branchp),
2 padl bit (2), I* paddinQ to prevent straddling word

boundary*/
2 uid bit (70/*uidsize*/), I* unique id of branch *I
2 (dtu, dtm, dtd, dtbm, rd) bit (72),
2 dirsw bit (1), /* if •1, branch is a directory branch*/
2 optsw bit (2), /* value of copy and relate switches*/
2 be bit (24), l* count of no. of bits in seg */
2 consistsw bit (2), /* value of consistency variable*/
2 mode bit (5), /* value of TREWA for current user*/

MULTICS SYSTEM-PROGRAMMERS - MANUAL SECTION BG.8.02 PAGE 4

2 usage bit (2), /* current usaQe of seq:read, write, data-
, share, unused¼/

2 usagect bit (17), I* count of the current no. of users
of the seg */

2 nomore bit (1), /* value of no-more-users switch*/
2 cl bit:(9), /*current length of segment in 1024 blocks*/
2 ml bit,(9)t I* max length of segment in 1024 blocks*/
2 acct bit (56), /* account to which storage for seg is

charged *I
2 (hlim, llim) bit (17), I* hi and lo multi-level limits ,-rJ
2 pad2 bit (2),
2 (rb1, rb2, rb3) bit (6), /* ring brackets*/
2 pads bi t (18) ,
2 pad3 bi t (1 8) ,
2 namerp bit (18), /* rel ptr to names *I
2 pad4 bit (19),
2 nnames bit (17), I* number of names for this branch *I

I* array of 11 nks */

dcl 1 links (linkct) ctl (linkp),
2 pad bit (1), /* padding to prevent straddling word

boundary *I
2 uid bit (70),
2 (dtu, dtm, dtd) bit (72),
2 pathnamerp bit (18),/* rel ptr to path name*/
2 namerp bit (18),/* rel ptr to array of link names*/
2 nnames bit (17)1 /* number of names*/

I* array of names for each branch and link - array of names for
the gates of each branch (if any)*/

dcl 1 namelist (nnames) ctl (nlistptr),
2 size bit (17),
2 string char (511)1

/*pathname of the entry to which each link points*/

dcl 1 pathname ctl (pathnameptr),
2 size bit (17),
2 string char (pathnameptr~pathname.size)1

For a more detailed explanation of each piece of the above
structures see BG.7.00, Directory Data Base.

MULTICS SYSTEM-PROGRAMMERS- Ml\NUAL SECTION BG.8.O2

3. chname

The primitive chname modifies the names of an entry in a
directory by adding one name to and deleting another from
the list of names of the entry.

call chname (dir, entry, oldname, newname, code);

dcl oldname char(*), I* name to be deleted from the
list of names of entry *I

newname char(*), /* name to be added to the list
of names of entry*/

PAGE 5

code fixed bin(17); /* if non-zero, it represents the
code of an error detected by the
file system •k/

It is possible to only.delete or to only add a name if
the newname or oldname argument is a zero-length character
string.

The user needs the write permission in dir to modify the
names of~- The directory supervisor calls the findentry
primitive to find entry in dir and then checks the list
of names in entry to be sure oldname is in the list, newname
isn-t and, in the case where only oldname is to be deleted,
to be sure that at least one name wi 11 be left in the
list after oldname is deleted. The hash~out primitive
of directory maintainer is invoked to vacate the location
in the hash table used for oldname and the hash~in primitive
to fill in an empty location in the hash table for newname
with the pointer to entry. If hash~in is unsuccessful,
e.g., newname is a name for another entry in dir and therefore
an empty location cannot be found for it, then entry is
unlocked and an error is reflected to the caller. Otherwise,
oldname is deleted from and newname is added to the list
of names of entry.

If entry is a link, the date-time-modified item is updated
to the current date and time. If entry is a branch the
date-and-time-branch-modified item is updated to the current
date and time. This is to indicate to the backup system
that the branch has been modified, not the segment. In
any case, segment control is notified of the modification
to the contents of dir through the primitive dirmod (see
BG.3.00), the entry is unlocked and control is returned
to the caller.

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BG.8.02 PAGE 6

4. delentry

The primitive delentry deletes a specified entry from
a given directory. If the entry is a branch, the contents
of the segment to which it points are deleted first.

call delentry (dir, entry, csw, code);

dcl csw fixed bin(1);/* courtesy switch indicating whether
or not the caller wishes to delete
a segment while someone else is
using it
if= 1, give an error return to
caller if segment in use
if= 0, delete segment even if it
is in use .,,(/

The user needs the write permission in 9l!:, to delete entry.
If the entry is a branch, the user needs the write permission
in the branch also. First, the findentry primitive is
invoked to find entry in dir. If entry is a link, the
removel primitive in directory maintainer is called to
remove all traces of entry from dir (e.g., vacate locations
in hash table for its names, decrease the count of the
number of links in dir by one) and control is then returned
to the caller. If entry is a branch and if the current
length of the segment to which it points is non-zero,
then the contents of the segment are deleted through a
set of calls to segment control; makeknown, deleteseg,
makeunknown.

If csw = 1 and the segment is in use or if entry is a
directory branch and the directory segment to which it points
has entries in it, then the segment is not deleted, entry is
unlocked and an error is reflected to the caller. If
the current length of the segment is zero, or if the segment
was successfully deleted, the primitive removeb of directory
maintainer is called to remove all traces of entry from
dir and control is returned to the caller.

s. readacl

The primitive readacl returns the Access Control List
(ACL) of a specified entry on the Corrmon Access Control
List (CACL) of a specified directory. The calling sequence
is as fol lows:

call readacl (dir, entry, user_area, aclptr, aclct, code);

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.02 PAGE 7

dcl dir char(*),

entry char (*),

user_area area((*)),

aclptr ptr,

aclct fixed bin (17),

I* directory path name*/

I* entry name. If this argument
is a zero-length character
string the CACL of dir
is returned •k/

I* an area provided by the caller
in which readacl returns the
acl information*/

/.,'r pointer to a structure
allocated by Directory Super­
visor in user area which is
filled in with the contents
of the requested access
cont ro 1 1 i s t ·k I

/* count of the number of user
names in the access control
list, returned by the
Directory Supervisor *I

The structure to which aclptr points is set up in the
following manners

dcl 1 acl (acl~t) based (aclptr),
2 userid,

3 name char (24),
3 project char (24),
3 instance_tag char (2),

2 packbi ts,
3 mode bi t (5),
3 pad13 bit (13)
3 (rb1, rb2, rb3~ bit (6),
3 traprp bit (18),
3 pad18 bit (18)J

dcl 1 trapproc based (tp),
2 size fixed bin (17),
2 string char (tp-t"trapproc.size);

Note that the structure output from readacl is identical
to the structure input into writeacl.

The normal procedure (and that used by the command setacl)
for modifying an ACL or CACL is as follows. Use readacl
to ~et the current ACL or CACL from the branch or directory.
Modify it in the array form given as output from readac].
Input the modified array into wri teac 1. Wri teac 1 reformats
the structure into a threaded list and enters the revised
ACL or CACL into the branch or directory.

MULTICS SYSTEM-PROGRAMMERS' tJANUAL SECTION BG.8.O2

Read permission is needed in the directory containing
the requested access control list in order to read it.
If entry is a link, the execute permission is needed in
dir and in each directory containing the links in the
path which ~oes from entry to the branch.

Implementation

PAGE 8

If the entry argument is specified (i.e. entry is a non-zero
length character string) then the findbranch primitive
of Directory Maintainer is called to find the branch effectively
poiri'ted to by the entry. The ACL is copied into the stack_area
and the branch is unlocked. (The branch was locked by
findbranch.) The ACL is then copied from the stack area
into the area provided by the user. The double copying
is to assure that this primitive will not incur an access
violation while it has the directory or a branch locked
in the case where the area provided by user cannot be
accessed. Control is returned to the caller •

. If the entry is a zero-length character string then the
directorr is found by getdirseg. The directory is locked
for read ng and the CACL pointer is found. The CACL is
locked and the directory unlocked. The CACL is written
into the stack area in order to avoid access problems.
The CACL is then unlocked. The CACL structure is read
from the stack area into the user area and control is
returned to the caller.

6. writeacl

The primitive writeacl replaces the ACL of the specified
entry or the CACL of the specified directory. The calling
sequence is as follows:

call writeacl (dir, entry, aclptr, aclct, code);

where the arguments are declared the same as in readacl
except that now aclptr and aclct are input arguments rather
than return arguments.

The structure to which aclptr points is the same as in readacl.

Write permission is needed in the directory containing
the requested access control list in order to replace
it. If ent~y is a link, the execute permission is needed
in dir and n each directory containing the links in the
path which goes from entry to the branch. The ring brackets
must conform to the following conditions: rb1~rb2~rb3
and rb1 must be greater than or equal to the current validation
ring number. If ring number or the ring brackets supplied
do not meet these conditions then the write operation
is not performed and a bad_ring_brackets code is returned.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.02 PAGE 9

I mp 1 emen tat ion

The new ACL or CACL is written into the current stack
area. This is to assure access before locking the directory.

If the entry argument is specified, i.e., a non-zero length
character stringf then the findbranch primitive of Directory
Maintainer is ca led to find the branch effectively pointed
to by the entry. (Bear in mind that findbranch returns
the branch locked.) The directory is locked for modification.
Write the new ACL from the stack nto the directory.
Free the old ACL. Unlock both the directory and the branch.
Tell the directory that the branch has been updated by
calling segment control at branchmod. Control is returned
to the caller. .

If the entry argument is a zero-length character string
then dAr is located through a call to segment control
at get rseg~ Lock the directory for modification. Find
the CACL pointer and lock the CACL. Read the n~w CACL
from the stack area into the directory. Free the old
CACL. Unlock both the directory and the CACL and return
control to the caller.

7. setSbc

The primitive set9bd is provided for the use of the file
.system interface mo ule (FSIM) for replacint the bit-count

item in the branch to which a given entry effectively
points.

call set~bc (dir, entry, bitct, code);

dcl bitct bit(24), /* count of the number of bits
in the se~ment to which entry
points, given by caller*/

The execute permission is necessary in the directory containing
the branch to which~ points. The primitive findbranch
is called to locate the desired branch. The effmode primitive
in the access control module is then called to find the
effective Rk>de of the user with respect to the branch.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.02 PAGE 10

If the mode does not indicate the write or append permission
for this user, then the branch is unlocked and this error
is reflected to the caller. Otherwise the bit-count item
is replaced, the current date and time is entered into
the date-and-time-branch-modified item and segment control
is notified of the modification to the directory containing
the branch through the primitive dirmod. Then the branch
is unlocked and control is returned to the caller.

8. set9constw

The primitive set3constsw changes the value of the consistency
variable in a branch to a given value. The setting of
the consistency variable specifies to the backup system
that the user does or doesn't wish the subtree beneath
this branch to be dumped consistently, (see BH.2.00).
The setting of the variable tells the user that either
1) the subtree is consistent, i.e., the subtree was successfully
dumped or. reloaded in a consistent state or no consistence
dump was requested, 2) the subtree is consistent but waiting
to be dumped in a consistent state, or, 3) the subtree
is inconsistent, i.e., dump aborted while in subtree or
entire subtree was not reloaded.

call set~constsw (dir, entry, canst, code);

dcl const bit(2); /* new value for the consistency
variable, given by caller (see BH.2.00
for meaning of various values for
this variable)*/

The user needs the write permission in the directory containing
the branch pointed to by entry.

The primitive findbranch is called to find the branch
pointed to by entry.

The value of the consistency variable in this branch is
changed to canst. The date-and-time-branch-modified item
is not updated in this case.

The branch is then unlocked and control is returned to
ca 1 ler.

9. setScopysw

setS relatesw

The primitives set9copysw and ~tSrelatesw chan~e the
setting of the copy and relate switches respectively,
in the branch to which a given entry effectively

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.02 PAGE 11

points. These consist of the copy and relate switches
which are interpreted by the Segment Management Module.
If the copy switch is ON, each user of the segment will
get his own copy. If the relate switch is ON, the segment
contains information about a set of segments which are
dependent upon one another. ·

call set~copysw (dir, entry, copy, code);

call set1relatesw (dir, entry, relate, code);

dcl copy bit(1),

relate bit(1),;

I* new setting of copy sw,itch */

/* new setting of relate switch*/

The write permission is needed in the directory containing
the branch to which entry points. The primitive findbranch
is called to find the desired branch. The value of the
option switches in the branch is changed as specified
and the date-and-time-branch-modified item is updated
to the current date and time. Segmemt control is notified
of the modification to the contents of the directory c0ntair:.·ng
the branch through the primitive dirmod, the branch is
unlocked and control 1s returned to the caller.

1 o. setS rd

The primitive setSrd changes the setting of the retention
date in the branch to which a given entry effectively
points.

call setgrd (dir, entry, rdate, code),

dcl rdate bit(72); /* new date and time nfter which the
branch to which entry points and its
segment are to be deleted, given by
ca 1 ler */

The write permission is needed in the directory containing
the branch pointed to by entry.

The primitive findbranch is called to locate the requested
branch. The primitive effmode in the access control module
is then called to determine the effective mode of the
user with respect to this branch. If the effective mode
does not indicate write permission or if rdate is greater
than the default time lapse added to the current date,
the branch is unlocked and the error is reflected to the
caller. Otherwise the value of the retention date in
the branch is changed to rdate.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.02 PAGE 12

The date-and-time-branch-modified item is updated to the
current date and time. Segment control is notified through
the primitive dirmod that the directory containing the
branch has been modified, the branch is unlocked and control
is returned to the caller.

11. appendbx and appendb

The primitive appendbx creates a new branch in the file
system hierarchy by appending it to a given directory.

Appendbx may be called directly if there is need, however,
it will usually be accessed through appendb.

call appendbx (dirname, name, dirsw, usermode, ringbrack,
usercode, optionsw, maxl, curl, bi tent,
code)J

dcl dirname char(*),

name char (*),

di rsw bit (1) ,

usermode bit (5),

ringbrack (3) bit (6),

usercode char (SO),

optionsw bit (2),

maxl bit (9),

/*pathname of the directory in
which to append the new branch*/

I* name for the new branch*/

/* switch indicating whether the
branch is to be a directory
(1) or a non-directory (O)
branch*/

I* access mode of creator
(current user) with respect
to this new branch trap,
read, execute, write, append*/

/* the three ringbrackets *I

/* the user's code number made up
of his name, project, and
instance_tag */

/* setting of the copy and relate
switches for this new branch
(if the branch is a directory
branch, these switches must be
off) *I

/* maximum len~th of the segment
to which this branch will
point (in units of 1024 words)*/

,.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.02 PAGE 13

I* current length of the segment
to which the branch will ·

curl bit (13).

point (in units of 64 words)*/

bitcnt bit (24)1 I* the number of bits in the
new segment */

A 11 arguments are given by the ca 1 ler.

The primitive ap~ndb sets up the defaults for current
length. bit count. the three ringbrackets and usercode
for ap~ndbx.

call appendb (dir. name. dirsw. usermode. optionsw.
max 1. code),

The defaults provided by appendb are as follONsa

cur 1 • 11 O'' b;

bi tent • "0'1 b

usercode = current user's name. project and instance_tag.

for i • 1 to 3
ringbrack (1) • validation level ring number

Appendbx is then called.

The user needs the append permission in dir to create
a branch in dir. The segment dir ls located through a
call to getdlrseg in segment control.

The first major task for appendbx to find a slot number
for this new branch. If there is a vacant branch in dir.
it is locked and its slot number and structure are used
for this new branch. Its contents are changed as listed
belON. Otherwise. a new branch structure is allocated
in dir and a new slot number (equal to plus the current
largest branch slot number) is given to this new branch.

It is locked and its contents are set as listed below.
The hash~in primitive is then called to put the slot number
of this new branch into the hash table location found
for~-

If this new branch ls a directory branch. the primitive
makeknown in segment control is called to make this new .
directory segment knONn. Then the segment can be initialized
(e.g •• count of total number of links in the directory
is set to zero). The primitive makeunknown is then called
for this segment.

MULTICS SYSTEM-PROGRAMMERS' M4NUAL SECTION BG.8.02 PAGE 14

The new branch is then unlocked. Segment control is notified
of the modification to dir through dirmod and control
is returned to the caller.

The following values are given to the new branch itemss

uid =

dirsw =

dtbrri =

dtd, dtu =

dtm =

usage, usagect, nomore =

ml=

be =

optsw =

rd=

cl=

hl im, 1 lim ..

acct•

names=

value of the function
unique_bits (BY.15.01)

dirsw

current date and time

0

O (if dirsw = non-directory)
else current date and time

0

maxl

bi tent

~ 0(if dirsw = non-directory)

default time lapse+ current
date and time

curl -
default setting

current user's account number

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BG.8.02

access control list=

12. appendl

userid - usercode

mode= usermode

rb1 • r n ack
rb2 • r n rb3 = ~r"i--n~-=..;.-4,,;;.

trap procedure= empty

PAGE 15

The primitive appendl creates a new link in a given directory.

call appendl (dir, name, pathname, code);

dcl pathname char(*).r/* pathname of the entry to which
this new link will point. given by
ca 1 ler */

The user needs the append permission in dir to create
a link in it. The segment dir is located through a call
to getdirseg in segment control.

If there is a vacant link in dir. it is locked and its
slot number and structure are used for this new link.
Its contents are changed as listed below. Otherwise.
a new link structure is allocated in dir and a new link
slot number is assigned to this link. It is locked and
its contents are set as listed below. The hash~in primitive
is called to put the slot number of this new link in the
hash table location found for name.

The new link is then unlocked. Segment control is notified
of the modification to dir through dirmod and control
ls returned to the caller.

The following values are given to the new link items:

uid •

dtu. dtm =

dtd •

names=

pathname =

value of the function unique_bits

current date and time

0

nsm
pathname

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.O2 PAGE 16

13. setml

The primitive setml changes the maximum length of the
segment to which a given entry effectively points.

call setml (dir, entry, maxl, code);

max 1 b i t (9) ; /* new maximum length of the segment to
stored in the branch to which entry
effectively points, given by the caller*/

The write permission is needed in the directory containing
the branch to which entry effectively points. The primitive
findbranch finds the desired branch. If maxl is less
than the current length of the file then the branch is
unlocked and an error is reflected to the caller. Otherwise
maxl is stored in the maximum length item in the branch.
If the segment is active, the segment control primitive
unloadseg is called to unload the segment if loaded, i.e.,
to place directed faults in all descriptors currently
pointing to the segment. Then, when one of these faults
occurs, the AST entry will be updated or constructed for
this segment and will contain the new maximum length setting.

To indicate to the backup system that the branch has been
modi'fied but not the file, the date-and-time-branch-modified
item is updated to the current date and time. Segment ~
control is notified of the modification to the directory
containing the branch through the primitive dirmod, the
branch is unlocked and control is returned to the caller.

14. movefile

The primitive movefile effectively moves a segment from
one section of the hierarchy to another. An existing
branch is modified to point to the segment and the branch
which originally pointed to the segment is modified to
point to no segment.

call movefile (dir, entry, csw, newdir, newentry, code);

dcl dir char(*),

entry char(*),

csw fixed bin(1),

/*pathname of a directory *I

/* name of an entry in dir which
effectively points to the segment
to be moved *I

/* as described for delentry *I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.02 PAGE 17

newdi r char(*).

newentry char(*);

/*pathname of a directory *I

/* nc;!lme of an entry in newdir which
will effectively point to the segment*/

All arguments are given by caller.

The user needs the write permission in the directory containing
the branch to which entry points and in the directory
containing the branch to which newentry points. The primitive
effmode in access control is then called to determine
if this user also has the write permission with respect
to the segment to which entry effectively points. If
not. the branch is unlocked and an error is reflected
to the ca 1 ler.

If the user has the write permission in dir the following
conditions are also necessary for the segment to be moved,

1 •

2.

3.

if the segment is a directory segment. it must have no
entries in it.
csw = O or the segment is not in use (if the segment is
in use and csw = 1 then the branch is unlocked and the
caller is returned an error). and
if the segment is active. it must be deactivated through
a call to unloadseg in segment control since the AST
entry for it contains invalid information such as the
slot nurrt>er of the branch pointed to by entry.

The primitive findbranch is called again to find the branch
pointed to by newentry. If newentry points to an inactive
zero-length segment then the items in the branches pointed
to by newentry and entry are changed as follows:

entry

did. f i le_map •

retrievesw. retrieve trap=

dtbm. dtm. dtu =

newentry

dtu. dtm. dtbm =

did. file_map. ml. cl,
be. dirsw =

a
0

current date and time

current date and time

corresponding items in
branch pointed to by entry

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.02 PAGE 18

actind. actime • 0

retrievesw. retrieve trap• 0

Both branches are unlocked and segment control is notified.
through calls to dirmod. of. the modifications to the directory
containing the branch to which entry points and the directory
containing the branch to which newentry points. Control
is then returned to the caller.

• i

