
TO: 
FROM: 
SUBJ: 
DATE: 

MSPM Distribution 
C.A. Cushing 
BG.8.OO and BG.8.O1 
January 27, 1967 

Section BG.8.OO has been rewritten to give an overview 
of the directory control module by explaining its interaction 
with the general user and the other modules (namely Segment 
Control) of the Basic File System. · 

Many minor revisions were made to BG.8.O1, particularly 
in the calls, in order to make them agree with the actual 
implementation of the module. 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BG.8.00 PAGE 1 

Published: 01/27/67 
(Supersedes: BG.8.00., 5/10/66) 

Identification 

Directory Control 
C. A. Cushing 

Purpose 

Directory Control (DC) is a module made up of two sub­
sections. One is the directory supervisor (OS)., the other 
is the di rectory maintainer (OM). The function of DC 
is to maintain the special segments in the tree hierarchy 
called directories and make selected contents of these 
segments available to the general user. OS provides this 
user with an interface to the file system and OM provides 
DC with certain utility routines. The only way for a 
user to manipulate directories is through directory control. 

Interaction with General Users 

Directory data bases are totally inaccessible to a user. 
However., directory control as part of the hard-core supervisor 
is able to access these protected segments for the user. 
For example., if a user procedure vJishes to see the contents 
of a directory entry., directory control copies selected 
items from the entry ir.to a structure provided by this 
procedure. 

A list of all such items returned from the contents of 
a directory entry fol 10\I\IS (see BG. 7 .00., Directory Data 
Base., for a complete description of each item). 

for branches: 

directory switch (dirsw) 
unique identifier (uid) 
date/times segment last used., (dtd) 

last modified., (dtm) 
last dumped (dtd) 

date/time branch last modified(dtbm) 
retention date (rd) 
options switches (optsw) 
usage status of segmznt (usage) 
count of users (usagect) 
no more users switch (nomore) 
maximum length of segment (ml) 
current length of segment (cl) 
number of bits in segment (be) 
account number (acct) 



r 

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BG.8.OO 

high and low multilevel 
apparent mode of uer 
protection list 

limits(hlim, llim) 
(amode) 

gate list 
names of branch 

for Jinks: 

unique identifier 
date/times link last used, 

last modified, 
last dumped 

path name of entry to which 
names of link 

Interaction with Segment Control 

(uid) 
·(dtu) 
(dtm) 
(dtd) 

this is a link 

PAGE 2 

The primitives to the supervisory section of directory 
control expect a symbolic name (path name or tree name) 
of the directory whose contents are to be manipulated. 
This name is then passed to the maintainer whose function 
is to find a specified entry in this directory. 

The directory maintainer calls segment control to get 
the segment pointer associated with the given directory 
path name. If the segment pointer is returned, i.e., 
the directory with the given path name is known to this 
process, then the directory maintainer uses this segment 
pointer (ITS) pair., pointing to the base of the directory 
segment to read this directory in search of _the given 
entry. 

When directory maintainer calls segment control to get 
the segment pointer of a directory given its path name, 
this name may not exist in the known segment table (KST). 
If this is the case., the segment is not known to the process 
and a segment pointer cannot be returned immediately. 
A circular recursive pattern of calls is then established 
between segment control, directory supervisor and directory 
maintainer in an attempt to find the given directory in 
the hierarchy and to make it known to the current process. 
After each complete turn., the original path name is broken 
down to get the name of the next superior directory (e.g . ., 
11 ( root )>a>b" becomes 11 ( root )>a" then " ( root )11 until one 
of these directories is found in the KST or the root of 
the hierarchy (which is known to the directory supervisor) 
is reached. In either case., the circular process can 
then begin to unwind. 

.. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.00 PAGE 3 

During the unwinding process each directory beginning 
with the first one found in the KST or the root., is searched 
for the branch which points to that inferior directory 
listed next in the original path name (e.g. if "(root)>a" 
is known., it is searched for 11 b11 ). t•Jhen this branch is 
found., the information in it is used to make the directory 
to which it points a known segment. Now that this directory 
is known., it can be searched for the branch pointing to 
the next inferior directory and so on until the original 
directory is made known., and its segment pointer returned 
to directory maintainer. 

The root of the hierarchy is known by directory supervisor 
and need never specifically be named by the general user 
when he writes a path name. Generally., a path name of 
a directory given to directory supervisor is relative 
to the root., i.e • ., the path name begins with ">" (see 
BXr8 for path-naming conventions). In this case., directory 
supervisor prefixes the name of the root to the given 
path name. In actual implementation., two directory names 
which are set in the process data segment are prefixed 
to the given path name (see BG.8.04., 11 set_base_dir11 ). 

In the circular process mentioned above the last directory 
name in the path name., i.e . ., the root., has a branch which 
is known to directory supervisor. Circlin~ as far as 
the root is usually done once., the first time a directory 
supervis_pr primitive is invoked by the process. It then 
becomes e known segment and stays known until all segments 
inferior to it (the root) become unknown. 

Hashing 

The method of searching a directory for an entry., given 
its symbolic entry name., is by hash coding (for more detail., 
see hash primitive in BG.8.01). There is a hash formula 
which is applied to the given name to produce an inte~er 
which points to a location in a hash tabJe contained 1n 
the directory. Each location in this table contains a 
slot number which is an index into another table., called 
a slot table., within the directory. Each slot in this 
slot ~able contains a pointer to an entry in the directory. 
There is a location in the hash table for each name of 
every entry in the directory. Since a single entry may 
have more than one name., there may exist more than one 
occurrence of the same slot number in the hash table which 
points (through the slot table) to the same entry. Once 
a slot number is taken from the hash table., it is used 
to obtain the names of the entry to which it points in 
order to see if one of the names matches ~he given name. 
If there is a match., then the entry is found. If not., 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.8.00 PAGE 4 

then a second slot number from the next location in the 
hash table is used to test another entry. Successive 
slot numbers are extracted from the hash table until the 
desired entry is found or the search is terminated either 
by an empty hash table location or in the patholo~ical 
case, by scanning every entry in the hash table, 1.e. 1 

table completely full. Depending upon the hash formula 
and the number of locations in the table, the number of 
tries should be small. 




