
,,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.19.OO PAGE 1

Published: 11 /12/68

Identification

Overview of the Locki~g Strategy in the File System
A. Bensoussan

Purp,ose

Sections BG.19.OO to .03 describe the use of multiple
locks in the Multics file system and the way they have
been implemented.

BG.19.OO defines the problem and provides an outline of strategy.
BG.19.O1 describes the locking strategy in page control.
BG.19.O2 describes the locking strategy in segment control.
BG.19.O3 describes the locking strategy in directory control.

Multiple Locks lo. Multics

We are referring here to the locks used to synchronize
processes executing in ring zero. It would be easy to
eliminate the problem by a single lock approach, allowing
only one process at a time in ring zero. But we think
it is worth having parallel processing in ring zero; therefore,
we have to synchronize processes each time they need to
share a ring zero datum, the value of which datum is subject
to modification.

We have chosen to control parallel, processing when each
of the following set of data ls involved:

- A di rectory

- A branch in a directory

- The hash table of the AST

- An AST entry

- The AST remova 1 11 st

- The SST free storage area

- A PST entry

- All data needed to handle a page fault (except
data needed for threading an AST entry in the
remova 1 . list).

- APT

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG. 19.00 PAGE 2

The way each of these data is protected by a lock associated
with it will be explained in detail in the appropriate
section. The observation we want to make at this point
is the following:

1/'Jhen a process has locked a datum, say D 1, and is now
waiting for another datum to be unlocked, say 02, which
has been locked by a different process, how can we be
sure that the process that locked D2 is not waiting for
01 to be unlocked. This situation has been termed a "deadly
embrace".

It is clear that if this situation occurred, both processes
would wait for each other forever.

We must establish rules of behavior such that, if followed
by all processes, the situation described above cannot
occur.

We have tried to analyze the general problem, first, in
order to find out what the basic requirements are; then
we have treated the real problem in Multics as a special
application., wi.th its special characteristics •

.l!JQ General Problem

The general problem can be defined as follows:

Several processes are sharing n different data; each process
may need an unknown number of these data in an unknown
order. How can we prevent the deadly embrace?

One solution would be for a process, upon finding required
datum X locked, to take the following action: Restore
all data locked by this process to the values they had
before being locked., unlock them al 1, wait for datum X
to be unlocked and restart at the point where the first
datum was needed.

This can be described by algorithm 1 (also represented
in Figure 1(a)).

Algorithm 1:

1. RESTART= Label of the instruction that tried to lock
datum X.

2. If no data are locked by the process, then go to 9.

3. Null operation (Step 3 will be used later).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.19.00 PAGE 3

4o Y = Last datum locked by the process.

5. RESTART= Label of the instruction that tried to
lock datum Y.

6. Restore all data to the values they had before Y
was locked. (This step wi 11 be termed the "decompute
operation" •)

7 o Un lock Y.

80 Go to 2.

9. Wait for data X to be unlocked.

10. Go to RESTART.

The operation described by Step 1 to 8, which has to be
executed in order to be allowed to wait for a datum locked,
wi 11 be referred to as the "back-up" operation.

The '' decompute11 ope rat ion is not easy to provide and we
will try to remove the need for it as much as possible.

If we knew that, for performing a function, we need to
lock only data A, Band C, we could start to alter any
of them only after all of them have been locked. This
way, if a process locks A and Band finds C locked, the
back-up can be done without having to restore A and B
since they have not been modified. When A~ Band C have
been locked, we can start to modify any of them because
we know that no back-up will be needed from this point
on.

But sometimes, and this is the case in Multics, it is
not possible to decide that, from• certain point on,
no other data will be needed; the reason is that, at any
instant, the course of a process can be diverted to a
temporary but unexpected path, for servicing a standard
fault (for example segment fault or page fault in Multics),
or for answering an interrupt, and a new datum may be
needed in this path. We wi 11 call this path a "secondary
path" o

Our main objective is to make these randomly inserted
secondary paths transparent to the main path as far as
the need for backing up is concerned; that is, a back-up
operation initiated in a secondary path should not have
to unlock data locked in the main patho

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.19.00

Wait Hierarchy Organization

We present the concept of a wait hierarchy between data
using a simple example first; then we describe it in its
generality.

PAGE 4

Let us assume that the number of data is only 2; the data
are A and B. Instead of using the previous algorithm
for preventing a deadly embrace, we can use the following
one: 11 When a process has locked A and needs to wait for
B, it can do so without unlocking A; on the other hand
when a process has locked Band needs to wait for A, it
has to back up as described in Figure 1 (a)11 • We wi 11
say that data A has "wait permit" for B.

For the general problem in which we haven data, we must
have a way of declaring that datum i has or has not 11 wait
permi t 11 for j, for any permutation of these n data taken
2 at a time.

This can be done by defining a boolean function W(i,j),
that we cal 1 11 wait permit function'', which has a value
for any i and any J (except i=j). By definition datum
i has wait permit for J if, and only if, W(i,j)=f. The
notation i-..j is equivalent to W(i,J)=1 and means that
a process can lock datum i and wait for datum j without
having to unlock datum 1. The wait permit function must
have the fo 1 lowing properties:

1. W(i,j) A W(J,i) = 0

·2. W(i,J)=1 /\W(j,k)=1 implies W(i,k)=1

An example of such a hierarchical organization can be
obtained by associating a unique number p(k) wfth each
datum k and by defining the boolean function Was follows:
W(i,j) = p(i) > p(j).

If a wait hierarchy is established, a solution to the
deadly embrace would be for a process. upon finding required
datum X locked, to take the following actions

Back up until all data locked by this process has the
wait permit for X.

This can be described by algorithm 2 (also represented in
F i gu re 1 (b)) .

,-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.19.OO PAGE 5

A 1 gor i thm 2:

Same as algorithm 1, except for step 3 where the null
operation ls replaced by:

3. If all data locked by the process has wait permit for
x, then go to 9.

It is clear that, if all processes use this algorithm,
no mutual blocking can occur: If a process, P1, is waiting
for datum y with other data locked on its behalf(then
any one of these data, say x, is such that W(X,YJ=1.
The process P2, that locked y cannot wait for x with
y locked since W(y,x)=O, by v1rtue of function W's property 1.
Furthermore, if P2 is waiting for datum z * x with y locked,
this implies that W(y,z)=1; the process that locked z
cannot wait for x with z locked since W(x,z)=1 by virtue
of function W's property 2, and thus W(z,x)=O.

The algorithm represented by Figure 1(b) has an advantage
over the one represented by Figure 1(a): The back up
operation does not necessarily require the unlocking of
all data locked by the process. We will use this property
in order to make a main path and a secondary path "back up
independent" •

A secondary path can be made transparent to the main path
with respect to the back up, if we can define a wait hierarchy
between data such that all data needed in the main path
has the wait permit for all data needed in the secondary
path.

General Method

The general method that we will use to solve the deadly
embrace problem for a system in which secondary paths
may be taken by a process is as follows:

1. Identify all data subject to locking.

2. Identify the different domains of execution in which
rtlilin path and secondary paths may be executed.

3. Identify the data needed in each domain.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.19.OO PAGE 6

ti. Establish a wait hierarchy by defining a wait permit function
W(i,j) which has a value for any pair of data (except i=J)
and has the two properties mentioned above.

5. Establish system restriction which inhibits the occurrence
of any secondary path that might need to unlock data
locked in the main path in order to satisfy the
requirements of algorithm 2. In step 4, the wait
hierarchy should be defined in such a way that it
minimizes the system restrictions.

Multics Characteristics

1. List of data

The list of all data which may be locked after a process
has entered the file system is given below, with the
nomenclature used to identify the locks associated with
these data.

Lock Variable

DIR(n)

BR(n)

AST.HT

ASTE(n)

PSTE(x)

AST.RL

SST.FS

PC

APT

Data Description

Directory whose tree name is n.

Branch for segment whose tree name
is n.

Hash Table of the AST.

AST entry for segment whose tree
name is n.

PST entry for process whose id is x.

List of AST entries candidate for
removal.

Free storage of the SST.

All data needed to handle a page
fault (except data needed to thread
an AST entry in the removal list).
The lock PC is used to enforce
sequential processing in page
control, core control and device
control.

Active process table. The lock APT
Js used to enforce sequential pro­
~essing in the process exchange.

. .

MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BG.19.00 PAGE 7

2. Domains of Execution

3.

We can identify four domains in which a Multics process
can be executing with a file system data base locked on
its behalf; they are:

0(0).

D (1),

D (2).

D (3).

Traffic Controller (TC).

Page Control (PC).

Segment Control (SC).

Directory Control (DC).

A Multics process executing in a domain D(i) can be
diverted unexpectedly from its normal course and be forced
temporarily to executed a secondary path in domain D(j),
with i > j if i ~ 2 and i ~ j if i = 2 (see Figure 2).

Data needed in each domain

The system requirements are such that in each domain a
process needs certain data as shown below (and in Figure 3).

DC SC PC TC

DIR DIR

BR BR

ASTE

PSTE

SSTofS

AST.RL AST.RL

PC

APT

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.19.00 PAGE 8

4. The Multics Wait Hierarchy

Since the same data may be needed in the main path and
in the secondary path, it is not possible to find a
wait hierarchy such that a secondary path is always
invisible to the main path as far as the back up is
concerned; therefore, we will have to establish system
restrictions. HOl\fever, the wait hierarchy has been
defined in such a way that a minimum of system restrictions
will be needed. The Justification for this hierarchy
organization requires more background than we have at
this point, and will be given in the appropriate
MSPM BG.19 section.

The notation a-.b is used for: data 11 a11 has the wait
permit for data 11 b11 , that is W(a,b)=1 and W(b,a)=O.
The standard Multics notation for tree names is used.

a. DIR(X > Y)-.BR(X > Y)-..OIR(X)

b. Any DIR and any BR....any ASTE

c • AS TE (X > Y)-.AS T (X)

d. Any ASTE~ST.HT, SST.FS and any PSTE

e • AST • HT----PC

f • PC---AS T • R L

g. Any data----APT

h. Any value W(i,J), with l + J, which is not defined
by (a) to (g) 1 s: W (i, J)=0.

This hierarchy is also represented in Figure 4.

5. System Restrictions

We can see in Figures 2 and 3 that we have interferences
between

DC and SC

SC and SC

SC and PC

The simplest system conventions that we could make to
remove these interferences are as follows:

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BG.19.00 PAGE 9

No segfault allowed in DC (solves DC - SC)

No segfault allowed in SC (solves SC SC)

No page fault allowed in SC (solves SC - PC)

But these conventions are too restrictive. In fact,
in SC we would like to use the PC machinery as much
as possibleJ we accept the possibility of not using
it in very special cases, in order to remove the
interference, but, in general, we want to use it. The
same way, in DC we would like to use the SC machinery,
except when there is again a possibility of interference.
Therefore, this solution, although simple, is not
satisfactory.

A further analysis of DC, SC and PC has shown that
the following restrictions are sufficient. They will
be justified in the appropriate BG. section.

a. Page faults must be inhibited in a process while
AST.RL is locked on its behalf.

b. Se~ment faults must be inhibited in a process
while AST.HT, SST.FS, any PSTE or any ASTE is
locked on its behalf.

c. Segment faults are allowed in a process while some
of the DC data are locked on its behalf, only if
this segment (whose tree. nilme wi 11 be designated
X > Y) satisfies one of the following conditions:

~ It is always active and its branch cannot be
modified,

- BR(X > Y) and DIR(X) are already locked by this
process, .

- All DC data already locked by this process has
the wait permit for BR(X > Y).

(a) is a minor restriction in SC. (b) is .-n important
restriction in SC; it is practically equivalent to 11 no
segment fau 1 t in SC". (c) is a minor restrict ion in 1 DC
since most of the directories referenced in DC satisfy
one of the required conditions.

The following MSPM sections will deal with the enforcement
of these conventions in page control, segment control
and directory control.

MULTICS SYSTEM-PROGRAMMERS' MA.NUAL

FIGURE a
SECTION BG.19.00 PAGE 10

(a)

(b)

t5: X

12

<I X

compute

Compute 1 ute 2_

---•~.,..Decompute 1 ______ [~ .. Decompute 2

Com ute 2

f

y

The notation used in Figure 1 is as follows:

<J 1

f>

= try to lock datum x; if successful, then
take path 1 else take path 2

= Unlock datum x

= Any set of instructions

decompute = The set of instructions needed to initi~lize
the process to the state it was before the
"compute" operation

back-up = "Back-up" is a boolean function whose value is
11 N0 11 if all data locked on the behalf of the process
have wait permit for the datum we nned to wait for;
otherwise its value is YES

• J

MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION BG.19.00

DC = D(J)

FIGURE 2

Main and Secondary Paths

SC= D(2) PC == D(1)

I
f

l -------····~---···---,, ----------···-
. - '" - - •· - . - " - .. - .. -- •· ~ - ., ., .. - - - -J

PAGE 11

TC= D(O)

.. .,
• . . J

. -.... -..... ---- --........ ----.. '. ---- ·- --7

.. -· - - ... r -_-_____ ------------- ------ -------------------- ---- -- -- --•

Main Path

Secondary Path

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BG.19.00

I
I

/
.I

f

/

.I
// .

/ DC= D(3) .

".
,/ SC = D(2)

(ASTE (PC

FIGURE 3

Data Needed In Each Domain

PAGE 12

TC= D(O)

,.._.,

MULTICS SYSTEM-PROGRAMMERS"' ~NUAL
FIGURE It

SECTION BG.19.00

Multics Wait Hierarchy

BR(root>a) ·] [' --~
BR'(root~} ___ .J

_ .. _. t ···-·

.,.,//''f ASTE(root>a) J ASTE(root>b)

SC

fc~.
TC

PAGE 13

DC

Datum x has wait permit for y if and only if one of these conditions is true:

1 . There is an arrow pointing directly from x to y: X 1------_....,y

2. There is an arrow pointing indirectly from X toy:

3. X 1S in an outer ring: co

