MULTICS SYSTEM PRUGKAMMERS' MANUAL SECTION BF.3.03 PAGE 1
Published: 01/10/68

ldentification
The Universal Device Manager Process Groups
S. |. Feldman

P ose

The universal device manager processes are the processes that
normally control [1/0 devices, This section describes the
procedure that initializes and destroys these process groups,
under the control of System Control, (See Section BQ.)

Introduction

There is one universal device manager process per universal
device manager process group. These groups have user ids of the
forma ".xx_udmp.yy", where "xx" is the type of device and "yy" s
the instance tag. (There may be more than one group handling a
particular type of 1/0 device, and these group will have
different instance tags.) For example the first typewriter
universal device wmanager process group will have wuser id

".typewriter_udmp.aa".

Each device manager process uses a procedure called the
Dispatcher (see BF,.2.25). This module 1is <called by the Wait

Coordinator when certain events are signaled. The Dispatcher
calls the Driver (see BF.2.24) which in turn makes the
appropriate outer call, The Dispatcher's data base is the
Process Dispatching Table (PDT). The section describes the

procedure that initializes the PDT of a universal device manager
process,

when the system is brought up, System Control creates all of the
system processes. For this purpose, System Control has a list of
processes and a set of Process Initiation Tables (PITs),
(Universal Device Managers will always have such a pre-defined

PIT). After the universal device manager process has been
created, the following call is made:

call udmpg$init(pitptr);

The pitptr points to a standard PIT (see BQ.1.01). The last
entry of the PIT is actually a structure of the following form:

. type char(32),
2 pdt_name char(32),
2 pit.ndev fixed bin,

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.3.03 PAGE 2

2 resource_names(pltptr=->plt.ndev) char(32);

Initialization

In response to the call to udmpgs$init, the following steps are
taken:

1, A segment Is created in the present process group dlrectory
with entry name pitptr->pit.pdt_name. This segment will be the
PDT for this process.

2., Store pit.ndev In pdt.nroutes.

3. Store pit.init_done In pdt.init_done_event and store
plt.sys_control in pdt.creator_id.

4L, Set each elément of pdt.routes.type equal to plt,type.

5. Set each element of pdt.routes.resource_name equal to the
corresponding element of plt.resource_names.

6. Create an event walt channel with priority zero and store its
name in plt.shut_down, Give System Control access to this

channel,

7. Call ecm$set walt prior, since the above created event s

more important than any normal event call event.
8. Make the following call:

call disps$init(pdtptr);
dcl pdtptr ptr; /*point to PDT created abovex/

9, Wailt for the shut_down event to be slgnaled.

Destruction

After all of the normal user processes have been destroyed or
saved, System Control signals the event whose name was stored In
pit.shut_down above. The Wait Coordinator then returns from step

9, and udmpg then does the following:

10, Signal the event with name plt.shut_down_complete for the
process with Id pit.sys_control. It Is assumed that all 1/0 has
been shut down by the time Systemp Control wishes to destroy the
universal DMPs.

11. Return to the caller,

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF.3.03

'PAGE 3

The following is the declaration of the PDT:

dcl
2

NN

1 pdt based(p),
init_pnoc char(32),

dmp_prac_ld bit(36),

reasslign_event bit(70),
[1]

creator_id bit(36),
"

Inlt_dgne_event bit(70),

currenﬁ ptr,

pdt_name char(32),
(1]

dtabp Rtr,

dlsp_pﬁr,

reassign ptr,

locall ptr,

reenable ptr,
restart ptr,

quit ptr,

hardware ptr,
nroutes flixed bin(l1l7),

routes(n),
"

WO W WW W

type char(32),
resource_name char(32),
user_Ild char(50),
foname char(15),

pibp ptr,

icbp ptr,

tbsp"ptr,

W W W W W

3 att_ﬁtack ptr,
3 locall_event bit(70),
“"

restart_event bit(70),
"

w

3 hardware_event bit(70),

/*Process Dispatching Tablex/

/*name of procedure to be
called for initialization.
Equal to "disp$init'«/

/*1d of this Device Manager
Process*/

/*event channel to be signaled
when device Is assigned or
unassigned to this process*/

/*1d of process that created thils
Device Managerx/

/*event channel to be signaled when
inftialization of this process is
complete, */ :

/*pointer to element of routes
for device for which work
is being done at present*/

/*name used by other processes to
find PDTx/

/*pointer to Driver's driving
tablex*/

/*pointers to entry points of
the Dispatcher*/

/*number of entries in routes array*/
/*an entry for each device which
may be asslgned to this process.
n = pdt.nroutes*/
/*type of resource*/
/*resource_name for thls devicew/
/*user to whom device Is asslgned*/
/*DCM loname, a unlique character stringw/
/*pointer to PIB for this DSMw/
/*pointer to ICB for DSM»/
/*pointer to Transaction Block
segment in user''s group
directoryx*/
/*pointer to entry in attach_stack
area for pushed-down DCMw/
/*event to be signaled by DSM
for iocalling, resetting,
inverting, and divertingw/
/*signaled to restart a path
in external quit conditlon*/
/*event channel signaled when

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BF,3.03 PAGE &

/*

*/
.del

2

2
2
2
2
2

N

3 qultﬁgvent bit(70),

W

reenﬁble_event bit(70),

device_absent bit(1l),
asslﬁned bit(l),

atta%hed bit(l),
[]

ext_gult bit(l),

W W W ww

lnt_quit bit(l),

interrupt received from devicex/

/*event to be signaled to stop
device and prepare for a diverts/

/*signaled when auxiliary
chain or TBS Is unlocked¥/

/*1 if device not present+/

/*1 If device assligned to this
process%/

/*1 if attach call has been
issued+*/

/*1 If device In external quit
condition*/

/*1 If device in internal (hardware)
quit condition*/

attach stack area((10000));/*area into which blocks are

1 att_thread based(p),
11]

ioname char(1l5),
locall_event bit(70
reenable_event bit(
pibp ptr,

lcbp ptr,

status,

3 attached bit(1l),
3 ext_quit bit(l),
next p&r;

),
70),

allocated for diverted paths*/

/*declaration of block to be
allocated into att_stack
area for pushing down of
DCMs*/

/*DCM fonamex/

/*event channel namex*/

/*event channel namew/

/*points to next block in thread
of pushed-down DCMs*/

A
-

-

