TO: =~ MSPM Distribution

FROM: R. R. Widrig

SUBJECT: BF,20,13
DATE : 12/01/67

The document has been expanded to include a description
of a new entry, '"check$device_name',

“MULTICS SYSTEM-PROGRAMMERS“ MANUAL SECTION BF.20.13 PAGE 1

Published: 12/01/67
(Supersedes: BF,20.13 07/19/67)

Identificgtion

GIM - Mlscellaneous
D. R, widrig and S. D. Dunten

Purpose

" This section is part 5 of the complete descriptlon of
the GIM: see BF,20,02,

General List Utilities-check$list, check$dev1ce index, chéck$gioc,
check$connect check$statusp, s
check$device_name :

Many of the GIM procedures require validation and/or generation
of data relevant to a particular device For instance,

the GIM may need a pointer to a user”’s Loglcal Channel

Table (LCT), or the GIM may wish to verify that an item

index is contalned with a list, etc, The various checking

and generation routines are conta1ned within a single

module named '"check'", The various routines are described

in the following section,

A moments inspectlon revea]s that many of the items relevant
to a user”s list are quite inter-related, Specific relations
may be found among the following list items:

1. list 1d

2. Logical Channel Table (LCT)
3, list number

4, . item index |

5. List Status Table (LST)

"To derive and/or check the va]idity of the abové-mentioned
items, the GIM makes the following call:

call check$list (control_bits, id, lctp, idf, idx,
lstp, lrtn)

where the argumenfs are declared as follows:

control_bits bit(8) /* check and verification control */
id bit(24) /* Tist ID */
~lctp ptr ' _ /* pointer to user®s LCT */
(idf /* list number */
idx) fixed b1n(12) /* item index */
Istp ptr /* pointer to LST */ '
Trtn bit(36) /* standard GIM error return word */

MULTICS SYSTEM‘PROGRAMMERS; MANUAL SECTION BF.20.13. PAGE 2

The variable "control-bits" is used to control the checking
and validation of the list data. 1t can be conceived

of as-.a micro-coded dispatch tabTe with the following
meaning:

Bit Number | Meaning if Bit is 1
1 Derive LCT pointer from ID
2 Derive 1list number from ID
3 Not used |
b Derive LST pointer
5 _Check LCT pointer
6 Check fist number
7 - Check item index
8 Check LST pointer

Consideration of the items involved quickly reveal that

many subtle inter-relationships exist, For instance,

a request to derive an LST pointer requires prior validation
of the 1ist number and the LCT pointer as these two items
are necessary for deriving a LST pointer

Assuming that various consistency inter- re]atxonshtps

of the type mentioned above are handled automatically

by the checkylist procedure, the following items are (or
can be) tested: ‘

1. LCT pointer validity

Errors include: 111ega1 logical channel number in id,
- "badid"., LCT not found, "lctnf",

2. List number validity

Errors include: iltegal list number from bad id:
"badid" .

3, LST pointer validity
Errors include: 1ist not defined: '"Indef",
L, Item index validity

Errors include: bad item index: '"badcall'.

MULTIC SYSTEM-PROGRAMMERS” MANUAL - SECTION BF.20,13 PAGE 3

The device name offered by a DIM caller as a result of
its receiving an "attach" call can be checked and processed

by an inter_GIM call of the form;

call check$dev1ce name(dev1ce name,dct_index, dev1ce index,

drtn)

where the arguments are defined as follows:

device_name char (*) /% name of device in DCT */
- dct_index fixed b1n(17) /% returned index of device in

DCT */
"device_ index fixed bin(17) /* device index from DCT */
drtn bit(36) ‘ /* standard: GIM error return
: word */

Check$device name scans every entry in the Device Configuration

Table searching for a match of "device Jhame'',

Upon finding

a match, the entry number of the matchlng name is returned
as ”dct index". The "device_index is returned from the

data Found in the matching entry,

Errors returned include only a name for which no match

can be found, “badca11“

The device index offered by a DIM caller in such calls
as request$status and define$list can be verified by a

call of the form:

call check$device_ index (dev1ce index lgch, lctp, drtn)

- where the arguments are defined as follows:

device index fixed bin(17) - /* user device tag */
Igch fixed bin(12) - /* logical channel number */
lctp ptr /* pointer to LCT ¥/ .
drtn bit(36) /* standard GIM error
, . e word %/

Checksdevice index cal]s out to the 1nter-process communication
ackage (See B0,6,01) to get the relationship between the

device index, ideyice_ index", and the logical channel

number, "1gch". The Togical channel number is returned

to the ca]ler. The logical channel number is then verified

to insure that it is within the proper bounds,

An error

results in the ""baddeV"' error, Assuming the 1oglca1 channel

number is within the proper bounds, the proper LCT segment

number is extracted from the Channel Assignment Table
(CAT) and checked, A segment number of zero indicates
no LCT is current]y defined for this logical channel,

This error causes the "lctnf" error to be set,

a legal segment number, a pointer to the LCT is

and check$device_ index’ returns triumphant,

Assumlng
constructed

MULTICS SYSTEM-PROGRAMMERSfvMANUAL - SECTION BF,20,13 PAGE 4

Several other utllity routines included in the check module
are:

check$gloc (giocno, gioc_ptr, grtn)
check$connect (giocno connect _ho, connect ptr
“gioc_ptr, crtn)”
check$statusp (giocno, statno, status_ptr; gloc_ptr, srtn)

where the arguments are declared as follows:

(giocno 3 - /% GIOC number */

connect_no ' /* connect channel number 3/

statno) fixed bin(17) /* status channel number */

(gioc_ptr /* pointer to GIOC base */

connect_ptr . : A pointir to connect channel
‘ - LCT =

status_ptr) ptr - ‘/* pointer to status channel LCT */

(grtn , /* standard GIM error return
word */ :

crtn ' e

srtn) bit(36) S . D eee

A1l of these routines validate the input arguments and

return the proper pointer to the desired data base., The
information relevant to each data base is contained within

the CAT and is processed in a manner similar to the processing
of the LCT pointer in the check$device_ index call,

gtting an_LPw Mg11box- lpw$set

The GIM makes the following call when it is des1red to
set the list channel mailbox:

call 1pw$set (Ictp, lstp, idx srtn)

where the arguments are defined as follows:

lctp ptr ‘ /% pointer to user’s LCT */

Istp ptr N A poin}er to’ llst to point LPW
: to *

idx fixed b1n(12) /% index of -item to point LPwW to

srtn bit(36) . /* standard GIM error return word

Upon receiving this call, lpw$set calls Ipwimktra to make
a transfer DCW which points at the proper item in the
indicated 1ist, Inspection of lpw$mktra reveals that
lists with no currently defined DCWs are translated and
readied for use, Having gotten the transfer DCW from
Tpw$mktra, one makes the shrewd observation that the only
d1FFerence between a transfer DCW and an equivalent LPW
"mailbox is the 3-bit type code., Thus, lpw$set transforms

*/

1.
w /

MULTICS SYSTEM—PROGRAMMERS* MANUAL . SECTION,BF;2D.13 PAGE S

~ the transfer DCW into an LPW mailbox entry bylsimply resetting
the DCW type code, . : ' _ S

A call to check$gioc will verify that a working GIOC is
to be used and will return a pointer to the GIJC mailbox
area, Errors include an unusable GIOC, 'giocnf" or a
bad GIOC number, '"badcall', '

Assuming no errors, the LPW is placed in the proper mailbox
via a call to double$store, Double$store is a tiny,
machine-coded, routine which accomplishes the setting

~of the 2-word mailboxes by such double-word operations

as STAQ., This is necessary since setting only one word

of the mailbox at a time could run into embarrassing and

- unpredictable GIOC behavior, ‘ '

Having inserted the LPW into the mailbox, a copy is placed
in the user’s LCT at the entry "lct,.stlpw'" for later use
‘in the lpw$fnd call, Lpw$§set then returns, - ‘

'Relating,a LPW_to a List- Tpw$fnd

At certain times during editing of active lists and during
the request$status call from a DCM writer, the GIM needs
to be able to relate a hardware List Pointer Word (LPW)
mailbox contents to a particular list and item within
the list, To relate the above quantities, the GIM makes
the following call: : ‘ S

call lpw$fnd (lctp, fbit, fidf, fidx, flpw, rtnf)
where the arguments are declared as follows:

1ctp'ptf.> o % poihter to user’s LCT */

fbit bit(1) ‘ /% ON if LPW has not moved since
R , startup */ '
fidf fixed bin(12) /* list number of related list */.
fidx fixed bin(12) /* index of related item */
flpw bit(72) - - . /* test LPW to be related */
rtnf bit(36) , % stagda;d GIM error return
L : . wor *

Upon receiving the call, 1pw$fnd starts by setting the ‘ :
l1ist number, "fidf'", and the item index, "fidx" to 0 indicating -
no related list or item could be found, The address field =
contents within the LPW are extracted for later use,

The LPW is then matched against a copy of the starting

LPW which was saved during the last time the list was

activated, (Recall that this item was saved in the user”’s

LCT as "lct,stlpw"' during the l1pw$set call from connect$list.)

i o
———F

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTIQN_BF.ZO,lS PAGE 6

A match indicates that the user’s LPw is still pointing

at the first item and has not moved, The caller of 1pw$fnd
may be interested in knowing this so "fbit" is set ON

to indicate it. _

A mis-match indicates the LPW has moved since the list
was activated, To put it another way, the GIOC has done
some processing on the DCW lists, A mis-match causes
. "fbit" to be set OFF and the abso1ute address saved earlier
to be backed up 2 locations, .This "backing up" or decrementing
of the LPW address reflects the fact that the GIOC LPW
~discipline is such that the LPW a]ways points to the. next
thin? to be done, That is, the item of interest is the
one Immediately before the’ LPW address.

Having gotten the LPW address, a search is made of all
defined lists which have defined DCW lists. Errors in
conversion of pointers into absolute addresses will cause
the system or machine error, 'syserr", to be set, For

each DCW list, the span of absolute addresses covered

by the list is checked to see if it covers the LPW address,
If it does, the 1ist related to the offered LPW has been
found, Simple arithmetic will get the item, 1pw$fnd returns,

If no 1ist spans the LPW address, the default settlngs : | Z_’
- for the 1ist number and item index are returned Th1s ' T
case is not considered an error, o

