TO: ~ MSPM Distribution

FROM: D. R, widrig T
SUBJECT: BF.20,11 .

DATE: 12/01/57

This document has been expanded slightly to indicate that
a "change'" structure need not actua ly perform any
modifications, ‘

The tally-base selection algorithm has been modified to
work in a more efficient manner, It is left as an exercise
to the reader to verify the algorithm®s effectiveness,

The "connect$list" description bas been expanded to indicate
usage of the call to execute device commands through the
GIOC connect channel,

A small revision was made to the "connect$list" description
to reflect latest changes in the Multics Connect Processor”s

calling sequence,

The "cread' description was slightly expanded to indicate
GIM list compression activities in certain special cases,

.

MULTICS SYSTEM=PR0GRAMMERS® MANUAL =~ SECTION BF ., 20,11 PAGE 1

ished, 12/01/67

ub 1
20,11, 07/19/67)

o]
N b
(Supersedes: BRF

JIdentification

GIM - List Editing and Activation
D. R, Widrig and S, D, Dunten

Purpose

This section is part 3 of the complete description of
the GIM; see BF,20,02. ,

Editing a List - change$list

In order to alter pseudo-DCW?s (and DCW’s, if any) the
DIM must make the following call: ~

call change$list (id, idx, hi_1t_lo, 1rtn, changelp
: [changenpl);

where the arguments are defined as follows:

id bit (2u) /% ID of list to be edited */
idx fixed bin (12) - /* starting item to be edited ¥/
ht_1t_lo bit (3) /* status switches for edit of
' active lists ¥/

rtn bit (36) .. /* standard GIM error return

word */
(changelp, /* points to change structures */
changenp) ptr /% ous */

and the '""change'" structures are as defined in Bf,2,03,
summary of GIM Calls and Data Bases.

The GIM entry change$list should be viewed as a dispatch
program which calls editing procedures into action as

they are needed, In fact, change$list does not actually
edit anything; it merely calls the proper editing routines,

Change$1ist begins by collecting an array of pointers
to the offered ''change" structures, A call to a special
EPLBSA procedure, getargs, returns a vector of pointers
to the "change'" structures and a count of the number of
structures offered by the caller,

MULTICS SYSTEM=-PROGRAMMERS © MANUAL ~ SECTIOV BF.20,%1 PAGE 2

The number of structures offered is checked to make sure
that at least ore was offered, If none were presented,

the error "badcall" is set and the GIM returns, Assuming
that at least onz '"change' structure was offered, the
caller’s list ID, "id", and item index, "idx" are broken
down and checked by a call to check$list, Possiblie errors
from checkdlist include iilega! ID, "badid", LCT not found,
"lctnf", list not defined, "indef' and illegal item index,
"badcall", ‘

I1f the list data is valid, the GIM checks to see if the

list is currently being used by the GIOC, A call to
Ipwdactive will indicate the channel”s activity, Possible
errors from Imwdactive include a bhad GIOC number, "badcall",
or the GIOC is no longer available, "giocnf', 1If the

list is active, a different editing technique is performed.

A later section, Patching Live Lists, discusses the mechanics
of altering a list being used simultaneously by the GIOC

and the GIM,

For an inactive 1ist, changedlist calls the GIM list editing
routine, mkpdcw, to edit the pseudo-DCWs indicated by ‘
the user., Information included in the call to mkpdcw
includes which LCT is being considered, which 1ist within
the LCT to edit, where to put the edited results, how

many items to edit, and pointers to the appropriate '"change"
structures.

Errors from the 1ist editor include the standard checkylist
errors mentioned above, no Class Driving Table (CDT) has
been defined, "cdtnf", illegal or unusable CDT type code,
"badtyp", illegal field quantity, "i11f1d", i11ega1 value
quantity, "ilival", list space exhausted, "tmist”, and
illegal action code, "pxlat",.

Further details on the list editor, mkpdcw, may be found
in a later section entitled Editing GIM List Jtems,

Upon completion of the list editing, regardless of success
or errors, changejlist is finished and returns.

Editing GIM List Ttems - mkpdcw

As discussed in earlier sections, the major design goal

of the GIOC Interface Module is the facility for 1nterpreting
DCM caller’s symbolic requests in a way that is both meaningful
to a GIOC and convenient for further manipulation., This
section discusses the translation mechanism which converts
symbolic requests into a standard item, the pseudo-DCW,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION =F 20,941 PAGE 3

i @ f

To translate one or more symbolic requests
the GIM makes the following internal catil.

e €0

call mkpdew (1ctp, olstno, olstx, nistne, nlstx,
chs, n, mrtn)

where the arguments are defined as follows:

lctp ptr /* pointer to user”s LCT %/
(olstno, ' /% old list number %/
Q?stx, | /* old 1ist starting index */
nistno, ’ © /% new Tist number %/
nlstx) fixed bin (12) /% new list starting index ¥/
chs (%) ptr /* pointers to "change"
structures */

n fixed - . /* number of "change" structures */
mrtn bit (36) /% sténdard GIM error return

: word 3/

Upon being callec, mkpdcw immediately validates the list
data and gets pointers to the indicated List Status Tables
(LST) via calls to checkylist. The standard checkdlist
errors may be returned. After validating the 1list data,
the CDT pointer, "l1ct,cdt", is extracted from the user”’s
Logical Channel Table-(LCTS. A null pointer indicates

the CDT has not been selected via the defineclass call.
The error "cdtnf", indicating the CDT was not found, is
set for a null CDT pointer, The Class Driving Table has
the following declaration:

/* Declarations for the Class Driving Tables */

dcl 1 cdt based (p), /% type array for specified
class ¥/
2 tpof(6) bit(18) /% offsets of type info ¥/
2 free area((800)5; /* area for type & field

structures */

dc1 1 tp based(p) /% type structure %/

2 tpval bit(8h), /% initial value for type(i) %/
2 nfld bit(24), /* number of fields for type(}) ¥/
2 fldof(100) bit(18); /% fields for type(i) %/

MULTICS SYSTEM-PROGRAMMERS“® MANUA

L SECTION BF,2ZC,11 PAGE 4

dc1 1 fld based(p), /* field structure '
2 fldact bit(3), _ /* substitution code for
type(i).field(J) */
2 fldend bit(15), /* rightmost bit of
' type (i), field(}) */
2 fldmsk bit(84), /* mask o set
’ type (i), field(j) */
2 nv bit(6), /% maximum value for
type(i).field(j) */ .
2 val(0: 100) bit(8u4); /% values for type(i), field(]) */
decl cdt_max fixed bin(17)
init(e); /* maximum CDT type allowable */

/* breakdown of field action codes

type 0 = illegal actinn.

type 1 = mask-value substitution
type 2 = literal substitution
type 3 = address substitution

breakdown of type codes

type 1 = status word

type 2 = CCW

type 3 = command DCW

type 4 = transfer DCW

type 5 = literal DCW '
type 6 = data transfer DCW
*/

The user ”changé" structures have the following declaration:

dcl 1 change based (p),

2 op-type fixed bin(17)
2 nchanges fixed bin(17)
2 changes (nchanges),
3 field fixed bin (17)
3 value fixed bin (24)
2 address ptr;

Note: ''nchanges" may be 0O indica

/*

/%
A
/*
/*
, /%

/7‘:

ting no

user change
structure »/

type of change */
number of changes ¥/
individual changes */
field to be altered */
alteration value */

data transmissien

address */

changes tc be made,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION B7,20.11 PAGE 5

For each user '“change structure, the following action
occurs, The op=type is extracted and validated =2gainst

the CDT. An out-of=-bounds op~-type or an op-type for which

no matching C2T “ype was defined result in a bad-type

error, "badtyp", 1If the type is valid, a pointer to the
appropriate "type'" substructure within the CDT is constructed.

The type code is now matched against the type code of

the pseudo-DCW aiready in existence in the old list at
the old place. A matching type is interpreted as meaning
the edit is to be performed on the old pseudo-DCW and
then moved to the new location, For a matching type,

a temporary pseudo=-DCW is initialized to equal the old
pseudo-DCW under consideration, Non-matching op-types
indicate the GIM is to use the initial value found within
the proper "type" sub-structure of the CDT. The main
edit is now started,

After extracting the field count limit, "nfields", from
the proper '"type" sub-structure of the CDT, the following
editing is performed for each specific change request
within a single "change'" structure., First, the field
number is extracted from the '"changes" sub-structure and
matched against the bounds previously extracted from the
CDT. Bound violations cause the illegal field error,
"i1Nfi1d', to be set, The CDT is checked to insure the
selected field is defined; the "il1f1d" error will occur

if it is not, For a defined field, a pointer to the appropriate
CDT "field" sub=-structure is generated. The action code
for this field is extracted from the "field" sub-structure,
A code of 0 indicates an illegal field and a setting of

the "111f1d" error.

Assuming a legal action code, mkpdcw now dispatches to
the proper routine to perform the edit, There are three
defined action codes, 1, 2, and 3, Each kind of editing
will now be discussed,

An action code of 1 indicates a mask-value edit., In this
form of edit, mkpdcw uses the 'value" item in the 'changes"
sub=structure as an index into the "value" array contained
within the appropriate CDT "field" sub-structure., Thus,

a '"value" of 5 will cause field,value(5) in the appropriate
"field" sub-structure to be used in the edit, Prior to
extracting the item from the CDT, the "value" index from

the 'changes" sub-structure is matched against the bound

on value indices, "nvalues", from the CDT "field" sub-structure.
Bound violations result in the i?}ega? value error, "illval",
being set, Assuming a legal "value" index, the approvriate

MULTICS SYSTEM-FROGRAMMERS © MANUAL SECTION 87.2C,11 PAGE

value in the "fi21d" sub=-structure is selected and inserted
into the temporary pseudo-DCW in the bit positions indicared
by the "field_mask" in the CDT "field" sub-structure,
Specific examples of mask=-value substitution may be found

in MSPM, BF.20,0%, DCM/GIM Interface Specificalions.

After inserting :he item Into the pseudo-DCW, tThe mask=-value
edit is compiete,

An action code of 2 indicates a literal substitution,

In literal substitution, the "value" item itself is used

in the edit. The right-most 24 bits of "value" are treated
as a bit string and are inserted into the pseudo-DCW using
the "field_mask'" as a guide, The positioning cof the field
is accomplished by using the "field_end" entry of the
proper CDT "field" sub-structure, Further examples of
literal substitution may also be found in MSPM, BF.20.01.

An action code of 3 indicates a data-address substitution,
This form of substitution is used to indicate where data
handled by the GIOC and GIM is to be placed or gotten,

As pointed out in earlier sections, all data transmission
handled by the GIOC is to a wired-down area known to the
GIM., At appropriate times, the data in the area is moved
to/from the user’s area, Until that time, the GIM must
remember where th2 data is to be found. The GIM remembers
the user data spaces by saving the data address in the
"address space'" associated with each user list. (The
format and manipulation of the address space was previously
described in the section entitled List Structures.) A
check is made to insure that the 1ist of newly-created
pseudo-DCWs has an address space allocated, If it does
not, one is now allocated. Errors in allocation indicate
that too many 1lis*s have been allocated., The "tmist"

error is set for address space allocation errors, Assuming
a valid address space exists, the proper entry is filled
in with the segment number and offset of the user’s data
area, The pseudo~DCW control bit indicating a valid address
supplied is set, . The data address substitution is now
complete,

Any other action code constitutes a general translation
error and results in the error '"pxlat" being set, 1It
should be noted that an unrecognized action code implies
an error in the Class Driving Table since the CDT is the
source of the action code.,

Having processed all "changes" sub=-structures, the temporary
pseudo-DCW has been completely edited and is inserted

into the new slot. Both the old and new list indices

are incremented and the next change structure is selected
for processing. :

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF,20.11 PAGE 7

Upon exhausting all the offered "change" structures or
upon coming to the end of either 1ist, mkpdew is finished.
It should be notad that the end of the 7ist te- mination
1s not considered as an error. Extra "change" structures
will not be proczssed, however,

Geperation of DCWs -~ mkdew
Whenever the GIM finds it necessary to generate actual
DCWs so that the GIOC may begin processing some /0 requests
for a user, the following internal call is made: -
call mkdew (1ctp, 1stp, mrtn);

where the arguments are defined as follows:

lctp ptr /* pointer to proper Logical
Channe! Table ¥/
Istp ptr /* pointer to List Status Table
to be processed */
mrtn bit (3€) /% standard GIM error return
, word %/

It is important to note that a call to generate actual
DCwWs is not under direct DIM control. The GIM reserves
the right to generate and release DCW lists as conditions
warrant and, in general, a DCW Tist will exist only when
the channel is active and the GIOC is performing a service
for the DIM, 1In these cases of channel inactivity due

to the channel having terminated, the DCW space will be
released, 1t will be shown that a policy of generating
DCW space only when needed results in smoother operation
of the GIM,

Before generating the actual DCWs, a preliminary check

is made to insure that the indicated list is de<vined.

An undefined list, detected by the 1ist pointer bein?

null, results in the error "1Indef" being set and an immediate

return,

I1f the list appears properly defined, mkdcw tests the
DCW-space pointer, "lst.dow', in the List Status Table
to determine whether or not the DCW space is - allocated.
If no space is allocated, a call to alloddcw is made to
allocate DCW space in the wired-down segment for DCWs,
dew_seg, If the allocation was successful, the DCW-space
pointer, "1st.dow', is set to point to the area allocated
for the DCWs, 1f the allocation was unsuccessful, the
error "wrkexh'" is set to indicate that workspace in dcw_seq
is temporarily exhausted,

MULTICS SYSTEM-FROGRAMMERS ¢ MANUAL ~ SECTION -EF.20.%1 PAGE 8

Upon receiving the "wrkexh" error, a DCM writer could
safely presume that repeated calls will eventually sgcceed
as other DCW 1ists belonging to other users arc continually
being released and the resulting space returned to the
general pool of free space,

After verifying =hat DCW space exists within tte wired-down
segment, dcw_seg, a tally base is selected. The following
discussion relates one of the major design aspects of

the GIM, the selection of the GIOC List Pointer Word tally.

A major consideration in the Multics GIOC Interface Module
is the relating of hardware events and discipline within
the GIOC to the symbolic environment of the DIM writer’s
lists. One aspect of the relation described above is

the translation of hardware items such as List Pointer
Word (LPW) tally into a list ID and an item within a list.
Such translation is necessary since hardware status stores
preserve only a few relevant items, one being the LPW
tally. In order to relate the LPW tally to a particular
list and item, the following scheme is used by the GIM,

Traditional use of the LPW tally in GIOC programming requires
that the tally reflect the number of DCWs to be processed.
Upon processing a DCW, the GIOC decrements the tally and
begins processing the next DCW, When the tally reaches

zero, suitable interrupts and status stores occur and

- the channel ceases activity., That is, one uses the LPW

tally as a counter. '

The GIM does not use the LPW tally in the manner described
above, Instead, the LPW tally is used as a program counter
and i{s the key to relating hardware events to DIM writer’s
lists. Since the LPW tal?y is not used as a counter,

other methods, described below, are used to indicate the
extent of DCW lists to the GIOC. At issue now is the
method of using the LPW tally as a tracer.

Suppose that each 1ist item of every list for a given
GIOC channel had a unique number assigned to it., Then,
if the GIOC were to store the proper unique number in :
addition to the other items stored at status channel storage
time, the GIM could easily relate which list and which
item is involved in the status store in question by comparing
the unique number of every item until a match of the stored
unique number was made. 1t will now be demonstrated that,
by using proper advance manipulations, the LPW tally can
?? made to serve as the unique number assigned to each

st item,

0

MULTICS SYSTEM=-PI0GRAMMERS® MANUAL SECTION B7,20,11 PAGE ©

Assume that the range of all possible LPW tall . es Iis the
closed Interval | to T, When the jth DCW list of length
L is generated for a given channel, the GIM decires a
number N to be associated with this 1ist such that the
following statements are true:

1. N will be used as the starting LPW tally such that
when 1tcm 1 of the DCW 1ist is processed, the LPW
tally is N, ‘

2., No other DCV list for this channel has an LPW tally
that falls in the range N to N-L+1, inclusive, (Recall
that LPW tallies count down in the GIOC,)

If the above conditions are met, then any status channel
action for list j will cause an "LPw tally to be stored
such that the ta11y stored, S, meets the following relationships:

(endlng LPW tally) N=L+1 < S < N (starting tally for list j)

Moreover, the number S is unique. Another way of viewing
the tally selection requirements is that the GIM selects

a "window" of LPW tallies for a list such that the "window"
does not overlap any other "window" for any othar list

on the same GIOC channel,

The GIM selects a tally base, N, according to the following
algorithm:

1. Set N = T; Preset top of window to largest possible value,

R Set B

]

2 N-L; Get bottom of window -1,

3. If B is less than 0, go to error, Window ran off bottom,
4, Select list from 1ogica1 Channel Table (LCT),
5

If 1ist is the test list or not defined or no DCW*s
allocated, go to 12,

6. Set n = selected list’s tally base; That is, get the top
of this 1ist” s window,

7. Set b = n-length of selected list; That is, get the
bottom of this 1ist®s window,.

8, If (N<=b)or (B> =n), go to 12, Test for window
overlap.

MULTICS SYSTEM-PRCGRAMMERS® MANUAL SECTION BF,20.'1 PAGE 10

9. Set N = bg Overlgp; move top'of_test window cown,
10, If N < =0, ther go to error, Window ran off bottom,
11. Reset to try all lists again, Go to 2,

12.4 If no other lists, set tally base = N and exit,

13, Go to 4,

Errors indicate an inability to allocate a window of the
indicated size without overlapping a previously allocated
window belonging to another 1list or an exhaust of the

LPW tally space available, For the model B GIOC attached
to the Multics configuration, the LPW tally space, T,
covers the range 1 to 4095, inclusive, It is felt that
4095 DCWs active at one time represent far more than any
DIM writer will ever need, However, if the above-mentioned
errors occur, the '"tmlst" error is set indicating too

many lists are currently being used, The DCW space is
released, "1st.dew' 15 set to null indicating no DCW space,
and return is made, Assuming no errors, mkdcw begins
actual DCW production by translating the pseudo-DCWs in
the offered list, '

For each item in the pseudo-DCW list, the following translations
and actions are performed, First, the skeleton DCW is

formed by copying the first 72 bits of the related pseudo-DCw,
To put it another way, the pseudo-DCW bears a suspicious
resemblance to a DCW., ' ‘

The pseudo-DCW control bits are checked to see if this
item causes a read or a write, If it does pot, the read/write
control bits from the preceding pseudo-DCW are copied

into this item, This insures that a pseudo-DCW involving
data transmission carries the proper flags generated by
the earlier read or write command pseudo-DCW, If the

item does initiate reading or writing, the control flags
are saved for later use, Note that the CDT alone contains
the control flags, Without these flags, the GIM has no
way of telling whether an operation will initiate reading
or writing,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF.20.11 PAGE 11

The pseudo-DCW {ype is now picked up and inspected. A
type 0 item indicates a "hole" or unused item within a
list, Since the GIOC has no null-cperation facilities,
the GIM performs a forward scan or preview to ee if any
valid items remain in the list past the hole currently
encountered, Supposing that a valid item does exist later
in the list a transfer DCW is constructed to point to

the valid item. The transfer is constructed via a call

to Tpwdmktra, the GIM transfer-DCW maker, The transfer
DCW is placed in the DCW slot corresponding to the hole

in the pseudo-DCW list. If no valid items remain in the
1ist, a transfer to the standard "safety" DCWs is inserted
into the DCW 1ist., It will be recailed that the "safety"
DCws are a pair of DCWs which are guaranteed to stop and
terminate any GIOC data channel. The "safety" DCWs are
inserted in the above case to prevent the GIOC from running
off the end of the list. ’ '

Both pseudo-DCW type 1, the status request, and type 2,

the COW type, are illegal if encountered in a list of

DCWs. Their occurrence causes the "dxlat" error to be

set indicating a DCW translation error, 1In the event

of this error, or any DCW translation error, the entire

DCW space is released and "Ist.dcw'" is reset to null indicative
of no DCW space currently assigned. '

If the pseudo-DCW type is 4, a transfer DCW is desired,

The 1ist and item within the 1list which is to be transferred
to are extracted from the pseudo~-DCW and validated via

a call to checkdlist, The standard check3list errors

may be returned. Assuming no errors, a call to Ipwimktra
will generate the necessary transfer DCW,

1f the pseudo-DCW type is 6, a data transfer DCW must

be constructed, irst, the control bits of the pseudo-DCW
used by the GIM are checked to make sure the pseudo-DCW
did, in fact, indicate where that data may be found (for
writes) or should be sent (for reads). If no address

was supplied, the "nadd' error is set and transiation
halted.

Assuming a valid address, the skeleton DCW is handed to

the routine patchyblen to compute the number of bits involved
in the data transmission. This count is rounded up to

the next larger word size and sufficient space allocated

in the wired-down segment, data_seg, by calling the general
GIM storage allocator, allojdata. The absolute address

of the space allocated is placed in the DCW’s address

field., Errors in allocation cause the "wrkexh'" error

to be set indicating work space exhaustion,

MULTICS SYSTEM=-FROGRAMMERS © MANUAL SECTION B7.20.11 PAGE 12

The offset of thz allocated area within "data_seg" is

saved in the pseudo-DCW for later use, If the pseudo-DCW
control bits indicate a write operation, the data is movec
from the user’s area into the wired-down area :n 'data_sed",

For a successful translation of the above-mentioned DCW
types and for pscudo-DCW type 3, command DCW, ind type
5, literal DCW, the GIM continues by translating the logical
status channel pointers selected by *the user into physical
pointers required by the GIOC, For example, the DIM writer
may indicate logical pointers, 1, 7, 6, and 3 are to be
used. After mapping the pointers, physical pointers 1,

2, 3, and 4 are placed in the DCWs, The mapping information,
contained in the Logical Channel Table (LCT) was included

in the GIM design to allow simple re-configuration without
the necessity of all DIM writers recoding certain portions
of their modules after every GIOC change. '

Having. re-mapped the status channel pointers, the fully
constructed DCW is placed in the proper slot in the DCW
list., Upon completion of translation of all DCWs, an

extra transfer DCW is appended to insure the GIOC going
into the "safety" DCWs instead of blindly running off

the end of the list, The 1list translation is then complete,

Generation of Transfer DCWs ~- Ipwymktra

During translation of pseudo-DCWs into DCWs and during
editing of active lists, it is sometimes necessary to
generate a transfer DCW, Many issues of security and
protection center around proper transfer-DCW production

with the result that it was felt a separate routine concerned
only with intra=-list transfers was necessary, The GIM
generates a transfer DCW with the following call:

call Ipwymktra (lctp, 1stp, idx, tdew, 1rtn)

where the arguments are defined as follows:

lctp ptr /% pointer to user‘s LCT %/
1st ptr /* pointer to list to be transferred
to */

idx fixed bin (12) /* item in 1ist to be transferred to */
tdew bit (72) /* generated transfer DCW */

Irtn bit (36) /* standard GIM error return status ¥/

MULTICS SYSTZIM-PROGRAMMERS © MANUAL SECTION FF,20.11 - PAGE 12

Upon receiving the above call, lpwdmktra initializes itself
and prepares to generate a transfer DCW, A lcop is entered
and the followirg actions are performed,

The 1ist.pointer ie checked to insure the list is defined,
An undefined list cannot be transferred to. Tae error
"bdtra" is set for undefined 1ists.

The index of the item to be transferred *to is checked.
‘An index which is out of the range of the target 1list
causes the "bdtra' error to be set, Assuming the target
item is within range of a defined 1list, its pseudo-DCW
type is extracted and inspected, '

A type O item, indicating a "hole", is allowed if and
only if there exists a valid item somewhere further on

in the target list, If a forward scan from a "hole" in
target list detects no valid pseudo-DCW item, the '"bdtra"
error is set, Otherwise, the transfer is accepted and
the next phase of generation begins,

A type 4 item indicates the target item is also a transfer.
The 1list number and item index of this new transfer is
extracted and va'idated via the checkylist cali., The
standard check3list errors may be returned, Assuming

valid list data, the loop is repeated with the new transfer
item, A maximum 1imit on the transfer chain length, "tdepth",
is set during system initialization, If the chain length '
is exceeded, either the chain is simply too long or the

user has programmed a loop of transfer DCWs. In either
case, an excessive transfer chain causes the '"bdtra" error
to be set, : :

Any other pseudo-DCW type constitutes a valid item to
transfer to.

Assuming a valid item to transfer to, 1pwimktra verifies
that the target list has a valid DCW 1list, If it does
not, (that is, "1st.dcw' of the target 1list is null),

a call to mkdcw will generate the target DCW list. Note
that this call may be a recursive call since mkdcw may
have already been calling Ipwdmktra. This is the usual
case upon initial activation of several user lists which

are tied together by user=-specified transfers,

After getting the target DCW 1list into proper order, the
transfer DCW is constructed. The DCW type is inserted,

the absolute address of the target item is inserted, and

the tally field (which resets the LPW tally upon the GIOC
detecting the transfer) is set to the unique tally of

the target item. The resulting transfer DCW is then returned
to the caller, '

MULTICS SYSTEM-FROGRAMMERS © MANUAL SECTION EBF,20.11 PAGE 14

Patching Live Lists - patch

One of the more complicated aspzscts of operating the GIOC

is the editing or alteration of DCW 1ists while the GIOC

is processing the 1ist being edited, This section discusses
the strategy followed by the GIM when an active 1list 1s

to be altered, 5pecial attention will be paid to the
relating of the GIOC status and the efficacy of the user’s
edit being performed.

Reference to the changedlist call discussed earlier reveals
that the list edit was handled differently if a call to
Ipwdactive reveailed the list was currently active, An
active list edit is performed in four major steps:

1. Create a new "auxiliary" 1list via a call to changeddfl,

2. Perform the edit on the old list pseudo-DCWs via a
call to mkpdcw,

3, Trans late the new 1ist into DCWs and patch the auxiliary
1ist back irto the main 1list,

L, Compress new pseudo-DCWs and DCWs back into main 1list.

Consideration of the above algorithm reveals that the
GIM need not be concerned with timing problems for parts
1 or 2, Part 3, however, is very sensitive as it is the
Sgﬁse that connects the new DCW list to the main list

S.

Part 3 of the above algorithm is handled by a single module
and several sub-routine calls, The main patching sub-program
is called "patch", For purposes of discussion, ?t will

be convenient to refer to a diagram illustrating an actual
list edit in progress, Suppose the user has indicated
that list "m"', of length 5, is to be edited at items 3

and 4, Schematically, the list is as indicated below:

m

to be edited

U [N (-

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION [F.20.11 PAGE 15

First, an auxiliary list of length 3 is created. This
list, called "a", is always created with a lerqgth equal
to the span of the edit plus 1. The reason for the extra
Item will become apparent in a mement, A call to mkpdcw
will cause 1ist items 3 and 4 in list '"m' to be edited
and the resultirg pseudo-DCWs placed in items 1 and 2

of list "a", Schematically, the 1list edit now appears

as follows:

m a
e
X’&)
L1 1g | l
2 2 ;
oL —
L5 |

The call to patch a live list appears as follows:
call patch (lctp, idf, idx, aid, hi_1t_lo, prtn)

where the arguments are defined as follows:

lctp ptr /* pointer to preoper LCT ¥/
(idf /% number of main list %/
idx /* start of patch area in
main list %/

aid) fixed bin (12) /* number of auxiliary list */
hi_1t_lo bit(3) . /* patch status */
prtn bit (3€) /* standard GIM error return

' word %/

Patch is called to join the auxiliary 1list, "a", to the
main list, "m', Patch begins by copying the main list
number and beginning edit item number, ?"m“ and 3 in our
example) into the proper auxiliary list data slots in

the user”s Logical Channel Table (LCT). This information
will facilitate later efforts to match an auxiliary list
item with its mate in the main list.

MULTICS‘SYSTEM-PROGRAMMERS' MANUAL SECTION B<,20.11 PAGE 16

1f the other auxiliary list is also being used to patch
1ist M item 2 thzn a patch on patch condition exists,
This condition is an error because of the difficulty the
GIM would have in keeping track of the patches., The
patch-on-patch error results in the '"patpat" error being
Set.

By referring back to the Generation of DCWs section, it
should be recalled that mkdcw performed the necessary

steps to cause the GIOC to avoid "holes" in the user’s
lists by generating transfers around the "holes", If

one of these "ho'es" occurred in the edit regicn in the
main 1ist, it becomes obvious that patch must undo the
transfer DCWs which cause the holes to be skipped, If

the transfers are not taken out or altered, then the patch
will never "take" as the GIOC will always transfer over
the patch area, Therefore, patch performs a backward

scan from the item just before the first item to be patched,
(number 2 in our example) and replaces all "hole" transfers
with a new transfer that points directly at the first

item in the edit area of the main list., The backward

scan is stopped by reaching the top of the 1list or by
encountering a non="hole" Item,

Having accounted for any "holes", the auxiliary 1ist’s

tally base is computed. Recall from the section on Generation
of DCWs that the tally base provides a means of uniquely
identifying a 1ist item, The auxiliary list tally base

is set such that item 1 in the 1ist has exactly the same

tally as the first edit item in the main list. (In our
example, the tally base of 1list "a" is set to the tally

of item 3 in list "m",) This insures that the auxiliary

1ist DCWs will appear as DCWs belonging to the main list,

After the tally base is set, a pseudo-DCW is constructed
for the last item in the auxiliary list., The pseudo-DCW
is a transfer-pseudo-DCW pointing at the next item past
the edit area in the main 1list, If the next item happens
to be beyond the end of the 1list, patch places a "hole"
in the last item instead of a transfer, The 1lists now
appear as follows:

m a

1 Rz 1

7 .y- 2
3 yg‘g 3
> 3
5 &7

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF.20.11 PAGE 17

Note that the first edit item (number 3 in our example)
was not altered, Thus, if the GICC now happens to come
through this area, the GIOC action is the same as it was
before the alteration was performed.

A transfer-DCW is now constructed, The transfer-DCW is
to be placed in the first item to be edited in the main
list and will point to the first item in the auxiliary
1ist. 1In other words, the transfer-DCW is the "patch"
that hooks the 1ists together. Inspection of “he section
entitled Generation of Transfer DCWs reveals that if the
target 1ist has not been translated into DCWs, a call

to mkdew is made to perform the translation. Since the
auxiliary list does not have any translated DCWs, the
call to mkdew is made by 1pwdmkira before the transfer-DCW
is generated, The standard mkdcw errors may be returned,

After getting the transfer-DCW, a pointer to the proper
GIOC mailbox area is generated by a call to checkJgioc.
Possible errors include a bad GIOC number, "badcatll",

or the GIOC not available, "giocnf", The transfer-DCW

is now patched into the main list DCWs via a call to patget.

Patget is a special-purpose EPLBSA routine that samples

the List Pointer Word (LPW) mailbox before the patch to

the DCW 1ist is made, patches the DCW 1list, and re=-samples
the LPW mailbox, It is required that the samplings be
separated by as short a time as possible, Patget will

be non-interruptible during this time to insure a rapid
sampling. Reference will be made later to the LPW sampling
before the patch, LPN1, and the sampling after the patch,

LPW2,
The 1ists are now joined and appear as follows:

m
1 1
—
3 3
s
5 |

The patching of the user’s edit requests has been accomplished.
Unfortunately, a formidable task remains, the determination

of whether the patch "took", That is, did the GIOC arrive
before, after, or during the patching operation. The

next task undertaken by patch is the answering of the

above question

)

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION EF.20.11 PAGE 18

The list data for LPW1 is found by a call to 1pwdfnd,

If the LPW cannct be matched against any 1ist, 1pwdfnd

will return a list number of zero., Patch will assume

that a list number of zero indicates the GIOC has gone
into the "safety" DCWs discussed in GI1OC Chann21 Activity.
A zero list number will cause patch to set the patch status
word, hi_1t_lo, to "010"b indicating the patch came too
late. Similar action occurs for LPW2, the LPW sampled .
‘after the patch., Note that the assumptions for LPW2 require
that the time of the sampling interval in patget is quite
small with respect to the speed of the GIOC,. In fact,

the GIM assumes *“hat patget performs its operations in

a time that allows no more than 2 or 3 GIOC actions on

a given channel,

If one assumes an appropriately brief interval between

LPW samples in patget, it follows that a simple test of
the item pointed at by LPW1 will reveal whether the GIOC
was above or below the patch area during the patch, If
the GIOC was belcw the patch area, the hi_1t_lc bits are
set to "001"b, 1If the GIOC was above the patch area, :
the hi_1t_lo bits are set to "100"b, Of course, the terms
"above™ and "below' refer to higher or lower item indices
in the main list, If the GIOC was working on the first
item in the patch area just as the 1list was being patched,
the patch occurred too %ate and hi_1t_lo is set tp "0O10"b.
to indicate this., .

If none of the above tests revealed anything, patch prepares
to "walk" down the list starting at LPW1. By ca11in$
a special routine named creadystep, patch takes one "step"
at a time down the list in the same manner as the GIOC
did. This stepping procedure continues until either the
end of the GIOC DCW 1list is reached or the initial patch
point in the main 1list is reached or the point indicated
by LPW2 is encountered.

If the LPW2 point is reached, the GIOC was not in the
patch area. In this case, the patch was effective., Patch
tidies up and returns. Similarly, encountering the end

of the list is interpreted as an effective patch, '

I1f the patch point is reached, the GIM must determine
which way the GIOC went, That is, there is no a priori
way of telling whether the GIOC travelled down the patched
fork in the DCW 1ist or down the old, un-edited, fork.
Assuming that only a small amount of GIOC action occurred
between the LPW samplings in patget, the following method
can be used to determine which fork was used by the GICC,

-/

MULTICS SYSTEM=-PROGRAMMERS © MANUAL SECTION R7.20.11 PAGE 19

Patch assumes that the patch 'took" and the GIXC went

down the patched DCW 1ist, Repeated calls to creadystep -
will "walk" patcn down the trail., The trace i« stopped
after some small number of steps (currently, 10)) or when
the point indica:ed by LPW2 is reached or when the end

of the list is reached, Patch then backs up to the patch
point and travels down the other fork, the old and un-edited
one, until it has traveled as far (used the same number

of steps) as the previous walk or until it encounters

the LPW2 point., If the LPW2 point is encountered, the
patch did not take so the hi_1t_lo switch is set to "010"b
to indicate the patch occurred too late,

If the trail goes as far as the other fork without encountering
the LPW2 point, the GIM presumes the patch '"took" and
the GI0OC processed some or all of the new patch,

The astute reader of the above section will undoubtedly

be able to convince himself of flaws in the above algorithms,
On the other hand, the prototype GIOC does not readily

lend itself to trail following of the type described above,

It is expected that the model B GIOC will provide the

GIM with at least one very powerful tool to facilitate
trail-following; this tool is the ability to flag transfer-DCWs
so as to cause an interrupt and a seilectable "tag" stored

in the hardware status word.

At the time of the installation of the model B GIOC, it
is anticipated that Multics personnel will review the
trail-following mechanisms contained in the patch module
and implement a more sophisticated and foolproof scheme.

List or Channel Activation - connectylist

In order to activate a 1list or restart a channel, one
requires that all symbolic editing and creation of the
pseudo-DCWs be translated into actual GIOC DCWs, Also,
one requires that the appropriate mailboxes and connect
instructions be issued so as to cause the GIOC to commence
processing the DCWs associated with the device under
consideration, 1In order to set the electrons in motion,’
the DIM makes the following call to the GIM:

call connectdlist (id, idx, 1rtn [, tid, ti@x]);

where the arguments are declared as follows
(id, /* id of 1ist containing CCW */
tid) bit (24) /* id of list to start GIOC at %/

MULTICS SYSTEM-PROGRAMMERS"MANUAL - SECTION BF.20,11 PAGE 20

o/
(idx, - /% 1ist item number of CCW to use */

rtn bit (36) /* standard error return word */

Prior to beginning actual list processing, connect$list

calls out to getargs to collect pointers to the optional
argument pair, "tid" and "tidx", If the number of optional
arguments is neither 0 or 2, the error "badcall" is returned,

Having collected the optional ar%uments (if any), the

list id and item index are verified through a call to
check$list, Possible errors include "badid", LCT not
found, "lctnf", 1ist not defined, "lIndef", and illegal
item index, "badcall", A check is then made that the

item in the indicated list is, in fact, a Channel Command
Word (CCW), If the pseudo-DCW type is not 2, indicating
a CCW, the error "notcew" is set, Assuming that a CCW

is being used, the user”s skeleton CCW is fleshed out

by inserting twice the GIM channel number for this device,
(Recall that "lct,phychn" contains half the actual physical
channel number,)

If no optional arguments were present, the GIM assumes that the

CCW is to be executed as a GIOC connect channel command, ~
Such commands do not require any data mailbox preparation,

Examples of connect channel commands include a '"request

status'" command, a '"rewind" command, etc.

Assuming no optional arguments, the GIM attempts to insert
and activate the CCW in the manner described later in
this section,

If the optional arguments were present, the GIM assumes
that the caller wishes to start the channel at the indicate
location, If the channel is already active, then the '
GIM further assumes the user has made an error., A call

to 1pw$active will resolve the channel®s status,

Lpw$active may report an error; either the error '"giocnf"

is set, indicating the GIOC is no longer usable or "badcall"
was set indicating an illegal GIOC number. Otherwise,

if the channel is active, the error "lpwact" is set indicating
the 1ist is active and cannot be switched.

MULTICS SYSTEM=-PROGRAMMERS® MANUAL SECTION BF,20.11 PAGE 21

Assuming that all is well, connect$list calls check$list
again, this time verifying the list and item indicated
in ;he optional arguments, The same errors arz possible
as 1n the earlier call to check$list, :

If the new 1ist proves to be valid, a call to pwlset
is made to set t4e LPW mailbox for this channe! to point
to the indicated starting point. It is at this point
that DCWs are formed, lists are tied together, and general
hardware-oriented tasks are performed., ~Possible error
returns from the call to lpw$set include: the standard
check$list returns, bad transfers within a lis%, 'bdtra",
wired-down workspaces temporarily exhausted "wrkexh",
too many list items "tmlst", "status" or "connect" or
unrecognizable "op-type" in list, "dxlat", no address
g%vznfﬁor data transmission '"nadd", or 1ist not defined,
ndef", :

Having survived the call to lpw$set, connect$list housekeeps
the Logical Channel Table for possible patching and editing
of the lists while they are active,

The user’s CCW is now added to the CCW queue for the indicated
GIOC connect channel, The CCW queue can be considered

to be a circular queue composed of 3 regions, One region,
the hardware queue, contains the CCWs currently being
processed by the GIOC, The hardware queue may be empty

if a particular connect channel has no work to do, The
second region, the software queue, contains CCWs added

since the connect channel was started on processing of

the hardware queue, These CCWs are currently unknown

to the GIOC, An empty software queue indicates either

an inactive connect channel and no work to do or no work

to do after the current connect channel activity terminates.
The final queue represents the unused or available queue
area, At a given moment in time, the queue for a given
connect channel will appear as follows:

QUEUE

word 1

last —m

Hardware Queue

middie —»
— ;} Software Queue
first —

}-Empty Queue

,/Lord N

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF.20,11 PAGE 22

The three pointers, "first", "middle", and "lest", delimit
the various sub-queues, The pointers and the queue for

a given connect channel are placed in a structure allocated
in the wired-down segment, dcw_seg. The structure 1is,

in effect, a Logical Channel Table (LCT) for a GIOC connect
channel and is known as a Connect Logical Chanmel Table
(CLCT). It has the following per-channel declaration:

/* Declarations for connect channel buffering and control */

dc1 1 clct based(p), /* chne?t channel”’s
) ICT %
2 lock bit(36), /% interlock */
2 actsw bit(1), /* ON if active */
2 fst fixed bin(17), /* index of first CCW */
2 mid fixed bin(17), /* mid-point index */
2 1st fixed bin(17), ' /* index of last CCW ¥/
2 ccwbuf(10 /% cbufsiz */) bit(36); /* buffer for CCWs */

dc1 cbufsiz fixed bin(17) ext staticy /* length of CCW buffer */

A pointer to the selected CLCT is obtained by connectdlist

via a call to checkyconnect. Errors returned may include

illegal GIOC or connect channel number, '"badcall", GIOC

not usable, "giocnf", or connect channel not usable, "connf", <
Check§connect generates the pointer to the proper connect

channel by inspecting information (relating the status

of each CLCT) found in the Channel Assignment Table (CAT).

Having gotten the proper CLCT, the caller’s CCW is added

to the end of the software queue, The "first" pointer

is then incremented to reflect the addition. If the "first"
pointer has run off the end of the queue, it is reset

to the beginning of the queue, The resetting of the pointer
effectively causes the queue to be treated as a circular
queue,

After updating the "first" pointer, it is tested against
the " last" pointer, If they are equal, the empty queue
has been completely exhausted and no more requests can
be accepted on this connect channel. Connectdlist will
rest in a busy loop until the queues are reduced by GIOC
activity, -

Assuming the queues are in proper order, a test of the
"active'" switch for this connect channel is made., 1f

the channel is active, no more action need be taken as
the GIOC will eventually get to the CCW just added to
the channel’s queue, If the channel is lnactive, it must
be started.

MULTICS SYSTEM-FROGRAMMERS® MANUAL SECTION BF.20.11 PAGE 23

To activate the proper connect channel, a propzr Command
Pointer word (CFW) must be placed in the connect channel”’s
mailbox, Also, it is presumed that the entire hardware
queue, if any, has been processed and can be scrapped,

This presumption hinges on a GIOC connect channel terminating
for only one reason, completion of processing of all CCWs '
given to it on a connect call,

The CPW is initialized by setting a status channel pointer
for the "exhaust" condition, This insures the GIM being
1?f8€med when the channel finishes processing Its list

o S. : '

The hardware queue is scrapped (and the empty queue expanded)
by moving the "last" pointer up to the "middle" pointer,

The "middle" pointer is moved up to the "first" pointer;
unless "first" is lower than "middle'", indicating a circular
queue, the extent of the queue is determined by the upper
end, If the "first" pointer has wrapped around to the
bottom of the queue, "middle" is set to point at the upper
end of the queue, Consideration of the above algorithm
reveals that a circular software queue is effectively

broken into two cqueues, a hardware queue and another (smaller)
software queue,

The number of CCWs to be processed by the GIOC is simply
the difference between the new '"middle" pointer and the
new "last" pointer, the delimiters of the hardware queue,
This difference is placed in the CPW tally field and the
absolute address of the CCW pointed at by "last" is placed
in the CPW address field, ’

A Connect Operand Word (COW) is formed using the symbolic
connect number for this connect channel, The COW is formed
in accordance with requirements set forth in MSPM, BK,5.01,
the Multics Connect Processor,

The "active" switch in the CLCT is set ON. The CPW is
inserted in the proper mailbox and a call to the Multics
Connect Processor is made,

Copying Data Into a ser’s Area - cread

One of the most delicate issues encountered when dealing

with an asynchronous 1/0 device such as the GIOC is the
determination of when the data associated with a particular

bCW list has been processed, In general, the GIM is confronted
- with three major problems:

MULTICS SYSTEM-PROGRAMMERS“ MANUAL ~ SECTION BF.20.11 PAGE 24

1. When to release areas dedicated for output
2. When to consider input as completed

3. When to compress DCW patches into the patched
or main list

The GIM resolves the above-mentioned problems by a single
call of the following form:

call cread (lctp, crtn)

where the arguments are declared as follows:
lctp ptr /¥ poihter!to,a Logical Channel Table ¥/
crtn bit (36) /* standard error. return word ¥/

The cread module is charged with determtning GIOC activities
and how they relate to DIM caller’s data areas., 1In effect,
one could view cread as a module that follows the GIOC
around and tidies up data transmissions, updates list
entries, etc.

Initial setup includes ?etting,the GIOC number and GIM
channel number for the indicated LCT. The GIOC number

is used to get a pointer to the GIOC base via a call to
checkygioc, Errors returned include 111ega1 GIOC number,
"bdca]]”, and GIOC not available, "giocnf", Assuming

all is in order, the current LPW and DCW ma11boxes for

the channe] indicated by the LCT are extracted and examined.
A call to Tpwdfnd will relate the LPW mailbox to a particular
list and item within the 1list. Possible errors include

only a system or machine error, "syserr"., Reference to

the entries "1ct,.copid" and "ict .copidx" will reveal the

last known starting place of all unexamined list activity,

It will be the task of the cread module to start at this
location and "walk" along the DCW lists until it reaches

the current list and item index. The following discussion
describes various bookkeeping functions performed on. the
journey,

A particular list and item within the list is selected

for consideration. The pseudo-DCW is examined to see

if it is a data transfer DCW and if the transmission was
directed from an external device to core memory. That

is, a test of a data transfer DCW is made to see if reading
was involved. For reading, the following actions occur

for each item selected,

MULTICS SYSTEM-PROGRAMMERS MANUAL SECTION BF,20,11 PAGE 25

A call to patch$dlen will return the total number of bits

to be transmitted by the DCW in question, If any of these

bits have alreads been copied by earlier calls to cread,

the entry '"lct,copbtc" will contain the count of those

bits already copied, A test is now made to de:ermine

whether the item under inspection and the current GIQC

DCW are one and the same, If they are the same one, then

only that data already input by the GIOC can be safely

copied, A call %o patché¢blen will return the *otal amount

of bits left to be transmitted by the GIOC DCW: the determination
of how many have been transmitted is then quite straightforward,
For coincident DCWs, a flag is set to indicate that cread

can go no further, If the items are not coincident, all

of the bits not copied by an earlier call can be copied.’

In addition, the flag is reset to indicate cread may continue
processing,

Having deduced hcow many bits of the data area are to be
copied, the GIM references the "address space'" vector

to determine where to place the data. A simple move then
places the data in the user’s area,

After moving the data, a call to cread$step advances the
trail following mechanism by one GIOC "step'"., If the
new advancement reaches the logical end, not physical
end, of the lists, the scan down the lists terminates;

a call to lpw$safe guarantees that the channel has stopped
and will remain stopped, (See GIOC Channel Activity for
a discussion of zctive channels,) Possible errors from
lpw$safe. include bad GIOC number, "badcall", and GIOC
not available, "giocnf", After making sure the channel
is stopped, all CCW lists and data areas for the proper
channel are relezsed via a call to mkdcw$free,

After processing all relevant items, cread updates the
information relevant to the last item processed, 'lct.copid",
"lct,copidx", and "lct,copbtc", Attention is then turned

to the compacting of patches back into lists being patched,
(See Patching Live Lists for a discussion of patching.)

This is done in 2 steps., The old DCW’s in the main list
are replaced by the new DCW?s in the auxiliary 1list,

The auxiliary list is then released, The first step may
be performed anytime after any read buffers associated
with an old DCW have been copied to the user®s area and
the GIOC is not working on an old DCW, The data areas
associated with the old DCW’s are freed and the old DCW’s
replaced by the new, This is done from the bottem of

the list to the top so that the transfer to the auxiliary
list is replaced last. :

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BF.20.11 PAGE 26

Once the transfer is done the GIOC enters the auxillary
list., If the auxiliary is not being used now by the GIOC
or the read-copying program it never will be and can be
released, The data a-reas are not released as they are
now be1n? used by the main list, Everything is now back
to normal and the patch is forgo*ten

If the aux111ary list is being used by the GIOC, the list
compression is skipped,

Note that another compression attempt may take place at
a later time,

