TO:. MSPM Distribution

FROM D. R, Widrig
SUBJECT: BF.20,29
DATE s 12/01/57

Slight modifications to some data declarations for the
GIM have been made, Specific areas affected are:

1. Hard core 1/0 data bases
a. nhadpt
b. n_rhys_chnls

2, Channel Assignment Table (CAT)

Jdentification

GIM - Basic Concepts
D. R, Widrig and S, D, Dunten

Purgdsg

Sections BF,23,09 through BF,20,13 are a cdetal’ed discussion
of the internal workings of the entire Hard-core I/0 Sysiem,
Collectively, the modules comprising the Hard-core I/0Q
System are known as the GIOC Interface Module (GIM),

This section forms part 1 of the GIM description: see
BF.20,02, The GIM is the sole interface between the Multics
Device Interface Modules, (DIMs) and the General Input
Output Controller (GIOC) As such, it is invested with

many system respcnsibilities such as user security, protection
against accidental or willful m1¢~orooramm1ng, prover

time accounting, awakening I/O~H?ofmoc processes, etc,

Many of the system respon51b13 ties tend to oppose or
conflict with each other, It wl%? be shown that such
conflicts figured quite heavily in the design cf the GIM

and its interfaces to the DIM programmers in the role

of GIM users, Krowledge of general GIM philosophy outlined
in BF,.20.01 is assumed, It will be helpful to refer to
BF.20.,03, Summary of GIM Calls and Data Bases, while reading
this document,

Introduction

Central to the understanding of the operations of the
GIM is the notion of a list. We shall define a list as
a structured array of symEolic descriptions which direct
the GIM to perform a useful service for a user,

For instance, one could imagine a list which tells the
GIM to Forward-space a tape 3 records and then read the
next record into a particular buffer area,

One could program the GIM with the knowledge necessary

to perform the above actions, Thus, the user need merely
say to the GIM, '"perform the forward-space operation 3
times, then do’ the tape read operation into this buffer",
The main problem with this type of scheme is in requiring
the GIM to know how to perform all operations for all
devices, a massive amount of knowledge, Moreover, as

new devices are added, one would be obllged to re-prooram
the GIM to add the new device facilities,

MULTICS SYSTEM~PROGRAMMERS' MANUAL SECTION ©F.20,00 PAGE 7

Moving to the onp051+e pole, one could program the GTHM

to accept requests in the form of standard grect 1'*"“Cﬁ‘0ﬂ%
the DCW s In this case, the GIM need know no*h ng about
any device, it nmerely accepts DCW lists and places them

in the appropriate user areas, Tﬁb major flaw in the

above implementation is pr.mﬁrxfy a quos**on of "ncur1+y.

The question of security arises out of the observatlon

that the GIOC does not operate with the standard appending
and protection machanisms availabie to the 645 processors,
Thus, at the GIOC level, one must deal! in I/0 iransmissions
dxrected to absolute addresses of wired-down o1" latched
core., Also, one has absolutely no hardware means of preventing
the GIOC From reading or writing protected areas thus
leaving open the possibility for core disasters or equally
disastrous securzty breaches, Clearly, the acceptance

of raw DCW’s from a DIM call to the GIM is not a viable
interface,

The list interface to the GIM has been carefully selected
so as to provide a‘minimum of bother to the GIVM user with

regard to GI0C iciosyncracies of absolute addresses, protection,

appending and seamentation, etc. At the same time, the

list interface allows the DIM writer a maximum F!ex1b;11+y
in operating a particular device through suitable symbolic
DCWs called pseudo=-DCWs, The interface also provides ;

a reasonable way of decoding GIOC hardware status words

so as to provide -2 maximum amount of information to the
user, The structure of the list Interface will be discussed
in the next section; a look at a given list structure

now seems in order,

List Structures

Ignoring for the moment the questlon of where a user may
expect to find his lists, it is instructive to consider
the format of a given list, Suitable declarations for

a DIM writer”s list are:

/% Declarations for the List Status Tableé ¥/

dc1'1 1st based(p), /* 1ist status structure %/
2 len fixed btn(12) /% length of list(i) ¥/
2 tbase fixed bin(12), /% LPW tally at start of list ¥/
2 adrist ptr, /% pointer to address Tist(i) ¥/
2 dcw ptr, /* ptr to DCW 1list (if list is
active) */
2 pdew(len), /% array of pseudo-DCWs */
3 optp bit(6), [* type of pseudo-DCW =/
3 odcowd bit(84); /% pseudo-DCwW itself ¥/

—~

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BF 20,00 FAGE 3

/* Address 1ist declarations ¥/

dcl 1 adrist(len) based(p), /% optional data address arrayv o
2 segno bit(18) /¥ segment number from adcr ox
2 offset bit(18§; : /* segment offse: from add

Several items bear further exclanation, Consider the

item "lst.,adrist”, If a pseudo-DCW indicates data transmission
to/from the user”s area, it will be convenient to indicate
both the segment number and the worc offset of the start

of this data area, Thus, associated with each pseudo=-DCw

in a list, one may also find it convenient to associate

an "address space pair" indicating the area of data transmission,
If no pseudo-DCWs will invoive data transmission (e,.g. '
a list of CCWs) then no address space is needecd., In this
case, "l1st.adrlst" is null, ‘ '

By the same token, one may only need DCWs. under certain
conditions, Therefore, the List Status Table (LST) incluces
a pointer to the DCWs which are ailocated on demand,

A null pointer ir "l1st.dew' indicates no DCWs are allocated
for the list.

Lists and the Class Driving Tables

For each device attached to a Multics system, the GIM

will always associate one of a number of Class Jriving
Tables (CDTs) which relate the characteristics of the

device in questicn., One could conceive of a CDT as an
"include" file which contains all the relevant "declarations”
for a particular device although the analogy to EPL should
not be over-emphasized. Having established a CDT for

a particular device, the GIM can always interpret a user”’s
symbolic 1list of instructions by consulting the CDT for

a translation of the symbolic instructions into GIM =~

or GIOC ~ understandable actions, Moreover, a suitably
defined CDT can also constrain and guide the requests

along the paths of correct operation, For instance, material
contained within the device description of a CDT for a

Model 37 Teletype might very well include the fact that

a “"seek" operation doesn‘t exist. Information contained
within any given CDT falls into 6 major types, hereafter
called "op=-types': _

A, Five GIOC DCW creation and editing requests

1) Channel Command Word (CCW) manipulation to facilitate
starting and stopping a channel,

/
/ .
MULTICS SYSTEM=P2OGRAMMERS * MAN'A’ SECTION BF,20C,09 PAGE 4

EN
v

i) Command nata Control Word {CDCW) manipuiation to allow
device-ariented commands such as rewind, etc.

e

i1i1) Transfe- Data Control Word (TDCW) man.pulation to a’low
programned branch of contro! within the GIOC, '

iv) Literal Data Control wWord (LDCW) manipulation for sending
constanzs to devices (g,g, marks, spaces, gtc.)

v) Data Control Words (DDCW) manipulation to facilitate
actual data transmission to/From the GIOC.

B, One GIOC hardware status translation request
vi) Interrupt Return Status |

A1l of the requests in group A above allow the user to

issue symbolic editing requests and alter the state of

the GIOC-oriented DCWs and CCWs associated with the device

in question, On the other hand, the interrupt return

status request in group B causes the GIM to taks a hardware
status word and turn it into a ;ymbo)xc format, The translation
in group B is a ''de-compilation'" in effect,

To summarize, in group A, the user hands over a list of
symbolic edit requests and causes the GIM to edit various
hardware words, In group B, the user receives symbolic
translations from the GIM derived from hardware words,

Hard-Core 1/0 System Data Bases

Data bases and structures within the GIM are divided into

two rough categories: 1) System-wide data bases, 2) Per-device
data bases, The per-device data bases can be readily

described as they are encountered, System-wide data bases

are used throughout the GIM so a brief preview of their.

format and function now seems in order,

A, Hard-Core 1/0 System Static Storage

Many system parameters relevant to GIOC operation
throughout the GIM reside in a static storage segment,
hcio_stat_. These values are set at 1/0 system
initialization time (see MSPM BL.8.00) and are never
altered except for dynamic reconfxcurat1on (e.g, add
a GIOC to the system) or system experimentation,

The following items reside in hcio_stat_:

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION &F 20,00 PAGE 5

nlchnls fixed bin (17} /%

ngiocs fixed bin (17) /%

n_stats fixed bin (17) /¥

number cf adaopters

T ONe™ > e e 2]

on GIOC(1) attached
fe £

Lo system ¥

number of logical
channels in Multics
configuration */

number of GIOCs attached
to systen %/

highest allowable status
channel number for GIOC */

n_physuchnls(i)‘fixed bin (17) /* (highest usable

cbufsiz fixed bin (17) /%
“stat_len fixed bin (17) /%

tdepth fixed bin (17) /%

dctp ptr /*
catp ptr /*
cstp ptr /*
dewp ptr /%
datap ptr /%

In addition, hcio_stat_ contains
between symbolic errors detected

physical channel number of
any attached GIOC(i))
divided by 2 ¥/

length of connect channe!
buffer area */

length of each status
channel buffer area */

maximum length of
transfer chain */
pointer to Device
Configuration Table
(BF.3,10; */

pointer to Channel
Assignment Table (See
below) */

pointer to Channe!l

Status Table (See below) */
pointer to DCW segment

(See below) */

pointer to DATA segment
(See below) */ ,

all the equivalences
in the GIM (e,g, system

or machine error) and the error code returned to the DIM
user, A complete catalog of these error codes and other
relevant error information may be found in MSPM, BF,20,05,

MULTICS SYSTEM=-PROGRAMMERS® MANUAL SECTION BF,20,09 PAGE 6

B. Channel Assignment Table (CAT)

The Channel Assignment Table (CAT) contains information
relating each GI0OC and device to the Multics configuration,
The CAT serves as a general index to most of the GINM

data bases and devices and, as such, serves a fundamental
role in the operation of the GIM, The declaration for

the CAT is related to the exact Multics configuration; a
typical configuration is shown below:

/* Declarations for Channe Assignment Table */

dcl 1 cat based(p), “/* assignment table (wired-
down) */
2 safep ptr, /* pointer to canned stop

: sequence */
2 chnary (250 /* nlchnls */), /* array of chanael poop */
3 padding bit(1), /* bit diddling */
3 devx bit(17), /* device index */
3 lctseg bit(13), /* segment no of lct */
2 gioctab(2 /* nglocs */), /* GIOC association array */
3 base bit(18), /% segment number of GIOC
base */

3 padding bit(13), /* bit diddling */

3 slct(0:3 /* n_stats */), /% lct for stat chans */
4 segno bit(13), - /* segment number */
L off bit(18), /* and offset */

3 clct(0: 22, /* lct for connect chans */
L4 segno bit(18), /* segment number */
L4 off bit(18), /* and offset */

3 adptab(20 /* nadpt(i) */, /* table of GIOC adapters */
L abase bit(18), /* starting channel number */
4 nchn bit(12), /* number of char in adpt */
L4 atp bit(6), /% type of adapter */

3 logchn(7: 255 /*
nphys_chnls(i) */) bit(12); /* logical chanrel(phys_
channel) ¥/

dcl catp ptr ext static, /* pointer to CAT ¥/
nadpt(2) fixed bin(17) ext static,/* num?er of adapters per
GICC

nichnls fixed bin(17) ext static,/* number of logical
channels ¥/

ngiocs fixed bin(17) ext static,/* number of GIOCs */

n_stats fixed bin(17) ext static,/* highest status channel

' number */

nphys_chnls(2) fixed bin(17) ext

static; /* maximum physical channel
number/2 */

MULTICS SYSTEM-PROGRAMMERS © MANUAL . SECTION R7,20,00 PAGE 7

The segment name of the Channel Assignment Table (CAT)
is "cat_seg".

Co

Channel Status Table (CST)

The Channel Status Table (CST) can be contidered to b
an extension of the GIOC hardware status queues, Har
status words are transferred from the harcdware queues
placed in appropriate slots in the CST, thus eliminat
certain interlock problems involved in maripulating
the harcware status queues while the GIOC may also be
manipulating them, Also, the CST serves zs a potentially
large and pageable buffer area in contra-distinction to
the small and wired-down hardware queues, The name of the
segment containing the CST is "cst_seg'. A suitable
declaration for the CST is:

/* Declarations for Channel Status Tables */

dc1 1 cst based(p), /% channel status table
(wired) ¥/
2 lock bit(36), /* update and removal

cst len fixed bin(17) ext

interlock ¥/
2 xtab(0: 250 /* nlchnls */), /% index table, where
0 = vacant list */

3 adper bit(1), /% ON if adaonter has made
error %/
3 fstx bit(17) /% index to first status(i) */
3 giocer bit(1§, /* ON if whole GIOC has made
error ¥/
3 1stx bit(17), /* index to last status(i) */
2 x1 bit(1), /% padding */
2 hix bit(17), /* highest index currently
used */ '
2 padding bit(18), | /* bit diddling */
2 stat(500 /* cst_len ¥%/), /* status frames ¢/
3 x1 bit(1), /% padding */
3 nxtx bit(17), /% index to next status
' block */ .
3 time bit(5L4), /* time of last interrupt
of channel(i) */
3 statwd bit(72); /% interrupt status word
' of channel(i) */
cstp ptr ext static, /* pointer to Channel

Status Table %/

static; /¥ 1éngth of status array

in CST %/

MULTICS SYSTEM-PAOGRAMMERS © MANUAL ~ SECTION B,20,00 PAGE ©

D.

GIOC Mailbo Areas

The GIOC mailbox areas are the heart of the GICC operation.
1t is within these areas tha*t the GIM reserves compiote
license for manipulation, The implementaion of the GIM
requires one distinct mailbox segment for each GIOC attached
in the Multics configuration, Initial implementation of

the GIM nhas given the name "gioc_mbxN' %o these segments,

N, as one might guess, covers the range ', 2, ..., ''ngiccs”,
Suitable declarations for the GICC mailbox areas are:

/* Declaration for GIOC mail boxes ¥/

dc1 1

2

NN N

mai 1box based(p), /* p points to the base of
GIOC mailboxes */

scw(0: 7),. , /* the 8 status control
words * :

3 scwa bit(36), /% word a */

3 scwb bit(36), - /% word b, the active one */

cow(D: 2) bit(72), /* connect channel pointer

_ words %/

x1(3) bit(72), /* 3 unused boxes */

data(7: 2047), /* data channels %/

3 1pw bit(72), /* list pointer word */

3 dcw bit(72); /% DCW maiibox */

GIOC DCW Area

Since the GIOC does not have a counterpart to the 645
processor appending hardware, the DCWs necessary for driving
the devices attached to a GIOC must reside in core in a
manner reminiscent of absolute programs. That is, the

DCW area must be wired-down segment that is either

unpaged or paged contiguously, The GIM will be responsible
for allocating and freeing space within the area so that

a user”s DCWs may be placed in the area and released

after they are used or are no 1on$er needed., The segment
name for this segment is "dcw_seqd'.

GIOC Data Area

In the same spirit as the GIOC DCW area, a wired=-down
segment, '"data_sed", is needed for a user”s data buffer
area, On all 1/0 instructions involving writing, the
user’s write buffer is first copied by the GIM into
"data_seg". Subsequent I/0 via the GIOC will write the
data onto the appropriate device, Similarly on calls
involving reading, the GIOC will initially place the data
in "data_sed". Subsequent actions of the GIM will copy
the data into the DIM user’s buffer area. '

MULTICS SYSTEM-FROGRAMMERS * MANUAL ~ SECTION BF.20.00 PAGE 2

One might raise the ob{ectidn that the abave desc
of I/0 implies that all Multics user 1/0 will alwavs
require at least one move, This is true, : -

A counter-a-gument hinges on the fact thav one is
attempting to perform 1/C into pageable, non wired-cdown

- areas with a device that recognizes neither paging
and page boundaries nor wired/unwired areas, A moments
thought will quickly reveal the inherent difficulties

- and incompatibilities between the two ideas, Moreaver, it
seems clear that the extra buffer area is the best way '
to resolve the existing incompatibilities.

G10C Channel Activity = Ipw3safe,,lpw$active

One of the most perplexing design problems centered around

a method for determining when a channel was or was not

active, Unforturately, the design of the GIOC does not

provide any infallible and simple method for inquiring

as to .a channel”s status. One could set switches whenever

the channel was started and reset the switches when a

channel termination was detected, Such a methcd could

be made to work although it is apparent that much synchronization
and general bookkeeping in a system-wide data ktase would

be necessary.

A much simpler (and presumably fail-safe) method has been

adopted by the GIM, One rule is adhered to:
"A charnel is active unless proven otherwise".

Fortunately, a simple method of proving inactivity exists,
During system initialization, two DCWs are generated and
stored in the DCW segment, dcw_seg. The first DCW is

a command DCW (DCW type 4) with the "last-DCw-bit", bit 17,
set ON., Whenever any data channel processes this DCW,

it immediately terminates activity, The second DCW is
placed immediately adjacent to the first DCW and is a
transfer DCW, It transfers to the first DCW, Thus, if

a data channel processes either DCW, it will quickiy cease
activity., Should the channel accidentally get bumped ‘
oé& of the command DCW, it will only return via the transfer
D -

The test for channel activity quickly resolves into testing
the List Pointer Word (LPW) of a channel to see if the
LPW is pointing at either of the two "safety" DCWs,

MULTICS SYSTEM-PROGRAMMERS"MANUAL SECTION BF,20,09 PAGE 10

In fact, the call to Ipw3active simply sets the activity
bit by a PL/I 1ogical statement to the effect that the

LPW is or is not pointing at the DCWs irdicatec as "safety!
DCWs in the Channel Assignment Tadble {CAT) at the entry

- M"cat,safep!, The LPW is set %o the safety DCws by one

~of 4 means:

1. The channel is initialized as such during system
- dnitialization,
2, The end of a DCW 1ist was reached and no user provision
for stopping the GIOC was encountered.
3. On a call to requestystatus made . by a DIM, the GIM noticed
a hardware status indicating channel termination.
L, The GIM stopped the channel in response to a DIM call,

The GIM may elect to stop a channel and require that it
cannot be accidentally restarted. The internal call Ipwisafe
is used in such cases. ' -

To safely stop the channel, the List Pointer Werd (LPW)

for the indicated channel is set to point to the command

DCW of the "safety" pair. The data channel mailbox is
filled with the command DCW of the "safety" pair., Finally,
both mailboxes are matched against what was just placed

in them, Transient or intervening channel activity may

have overwritten the ''safety" DCWs so the shutdown did

not have the proper affect, If the mailboxes do not match
the original "safety" DCWs the above insertions are repeated
until the mailboxes do match the safety DCWs. The channel
is now inactive and will stay inactive until positive

action is taken to restart it. Note that the above-mentioned
"safety'" action may not be noticed immediately by a GIOC
direct channel since this type of channel only refers

to its mailboxes when a DCW is needed. That is, a direct
channel will only terminate upon completion of processing

a DCW., This may delay a direct channel shutdown by some
small period of time but the shutdown is inexorable.

